Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSNONLINCIRC))

  • 332 Accesses

Abstract

Performance of an artificial olfaction system depends on the success and speed of its classification according to the chosen problem. In this chapter, the feature extraction part just before the classification part is exploited to reach a better performance for artificial olfaction systems, and cellular nonlinear network-based feature extraction models are presented. For achieving the best performance for different problems on the same network, a reconfigurable cellular neural network is introduced as a feature extractor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.C. Pearce, S.S. Schiffman, Handbook of Machine Olfaction: Electronic Nose Technology (Wiley-VCH, 2003)

    Google Scholar 

  2. P. Nef, How we smell: the molecular and cellular bases of olfaction. News Physiol. Sci. 13, 1–5 (1998)

    Google Scholar 

  3. M. Zarzo, The sense of smell: molecular basis of odorant recognition. Biol. Rev. 82(3), 455–479 (2007)

    Article  Google Scholar 

  4. L. Buck, R. Axel, A novel multigene family may encode odorant receptors—a molecular-basis for odor recognition. Cell 65(1), 175–187 (1991)

    Article  Google Scholar 

  5. Q. Gao, B. Yuan, A. Chess, Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat. Neurosci. 3(8), 780–785 (2000)

    Article  Google Scholar 

  6. A.F. Silbering, C.G. Galizia, Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. J. Neurosci. 27(44), 11966–11977 (2007)

    Article  Google Scholar 

  7. B. Hansson, Olfaction in lepidoptera. Experientia 51(11), 1003–1027 (1995)

    Article  Google Scholar 

  8. N. Strausfeld, L. Hansen, Y. Li, R. Gomez, K. Ito, Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn. Mem. 5(1–2), 11–37 (1998)

    Google Scholar 

  9. W. Zhou, D. Chen, Binaral rivalry between the nostrils and in the cortex. Curr. Biol. 19(18), 1561–1565 (2009)

    Article  Google Scholar 

  10. E. Morrison, R. Costanzo, Morphology of olfactory epithelium in humans and other vertebrates. Microsc. Res. Tech. 23(1), 49–61 (1992)

    Article  Google Scholar 

  11. H. Hotelling, Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24, 417–441 (1933)

    Article  Google Scholar 

  12. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  13. A. Vergara, S. Vembu, T. Ayhan, M.A. Ryan, M.L. Homer, R. Huerta, Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B Chem. 166167, 320–329 (2012)

    Article  Google Scholar 

  14. Figaro USA, Inc., http://www.figaro.co.jp/en/. Accesssed 15 Feb 2019

  15. A. Setkus, A. Olekas, D. Senuliene, M. Falasconi, M. Pardo, G. Sberveglieri, Featuring of odor by metal oxide sensor response to varying gas mixture, in Olfaction and Electronic Nose, Proceedings, of AIP Conference Proceedings, ed. by M. Pardo, G. Sberveglieri, vol. 1137 (2009), pp. 202–205

    Google Scholar 

  16. K. Pearson, On lines and planes of closest to systems of points in space. Philos. Mag. 2(6), 559–572 (1901)

    Article  Google Scholar 

  17. V. Vapnik, The Nature of Statistical Learning Theory (Springer, N.Y., 1995)

    Book  Google Scholar 

  18. S. Haykin, Neural Networks: A Comprehensive Foundation (Prentice Hall, 1998)

    Google Scholar 

  19. C.C. Chang, C.J. Lin, LIBSVM: a library for support vector machines, v2.85, software available at https://www.csie.ntu.edu.tw/~cjlin/libsvm/. Accessed 15 Feb 2019

  20. M.K. Muezzinoglu, A. Vergara, R. Huerta, T. Nowotny, N. Rulkov, H.D.I. Abarbanel, A.I. Selverston, M.I. Rabinovich, Artificial olfactory brain for mixture identification, in NIPS ed by D. Koller, D. Schuurmans, Y. Bengio, L. Bottou, (MIT Press, 2009), pp. 1121–1128

    Google Scholar 

  21. T. Ayhan, K. Muezzinoglu, M.E. Yalcin, Cellular neural network based artificial antennal lobe, in Proceedings of the 12th IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 2010) (2010), pp. 1–6

    Google Scholar 

  22. T. Ayhan, M.E. Yalcin, An application of small-world cellular neural networks on odor classification. Int. J. Bifurc. Chaos 22(1), 1–12 (2012)

    Article  Google Scholar 

  23. F. Gollas, C. Niederhoefer, R. Tetzlaff, Toward an autonomous platform for spatio-temporal EEG signal analysis based on cellular nonlinear networks. Int. J. Circuit Theory Appl. 36(10), 623–639 (2008)

    Article  Google Scholar 

  24. S. Sanei, J. Chambers, EEG Signal Processing (Wiley-Interscience, 2007)

    Google Scholar 

  25. EMOTIV, http://www.emotiv.com/. Accessed 15 Feb 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müştak E. Yalçın .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yalçın, M.E., Ayhan, T., Yeniçeri, R. (2020). Artificial Olfaction System. In: Reconfigurable Cellular Neural Networks and Their Applications. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-17840-6_3

Download citation

Publish with us

Policies and ethics