Skip to main content

MET as a Therapeutic Target: Have Clinical Outcomes Been “MET” in Lung Cancer?

  • Chapter
  • First Online:
Targeted Therapies for Lung Cancer

Part of the book series: Current Cancer Research ((CUCR))

  • 708 Accesses

Abstract

Targeted therapy is an especially attractive approach for treating lung cancer since overactivation of oncogenic proteins often drives disease progression. In particular, dysregulation of the MET receptor tyrosine kinase (RTK) pathway via genetic mechanisms, such as gene amplification and exon 14 skipping mutations, has been identified. With significant advancements made in the realm of targeted therapeutics, such as small molecules and antagonistic antibodies, developing novel strategies to target MET is at the forefront of lung cancer treatment. This chapter will introduce the MET signaling pathway and various genetic abnormalities implicated in lung cancer. Then, the currently used MET-targeted therapies and investigative agents will be highlighted along with their status in clinical trials. The final section will shed light on preclinical data revealing possible mechanisms of resistance to MET-targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

    Article  PubMed  Google Scholar 

  2. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  3. Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene. 2000;19(49):5548–57.

    Article  CAS  PubMed  Google Scholar 

  4. Du Z, Lovly CM. Mechanisms of receptor tyrosine kinase activation in cancer. Mol Cancer. 2018;17(1):58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hubbard SR. Structural analysis of receptor tyrosine kinases. Prog Biophys Mol Biol. 1999;71(3–4):343–58.

    Article  CAS  PubMed  Google Scholar 

  6. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zwick E, Bange J, Ullrich A. Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer. 2001;8(3):161–73.

    Article  CAS  PubMed  Google Scholar 

  8. Lawrence RE, Salgia R. MET molecular mechanisms and therapies in lung cancer. Cell Adhes Migr. 2010;4(1):146–52.

    Article  Google Scholar 

  9. Gelsomino F, et al. Targeting the MET gene for the treatment of non-small-cell lung cancer. Crit Rev Oncol Hematol. 2014;89(2):284–99.

    Article  CAS  PubMed  Google Scholar 

  10. Cooper CS, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311(5981):29–33.

    Article  CAS  PubMed  Google Scholar 

  11. Stoker M, et al. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature. 1987;327(6119):239–42.

    Article  CAS  PubMed  Google Scholar 

  12. Gherardi E, et al. Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc Natl Acad Sci U S A. 2006;103(11):4046–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maestrini E, et al. A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor. Proc Natl Acad Sci U S A. 1996;93(2):674–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rodrigues GA, Park M. Autophosphorylation modulates the kinase activity and oncogenic potential of the Met receptor tyrosine kinase. Oncogene. 1994;9(7):2019–27.

    CAS  PubMed  Google Scholar 

  15. Ponzetto C, et al. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell. 1994;77(2):261–71.

    Article  CAS  PubMed  Google Scholar 

  16. Furge KA, Zhang YW, Vande Woude GF. Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene. 2000;19(49):5582–9.

    Article  CAS  PubMed  Google Scholar 

  17. Maulik G, et al. Activated c-Met signals through PI3K with dramatic effects on cytoskeletal functions in small cell lung cancer. J Cell Mol Med. 2002;6(4):539–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995;80(2):179–85.

    Article  CAS  PubMed  Google Scholar 

  19. Gentile A, Trusolino L, Comoglio PM. The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev. 2008;27(1):85–94.

    Article  CAS  PubMed  Google Scholar 

  20. Birchmeier C, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol. 2003;4(12):915–25.

    Article  CAS  PubMed  Google Scholar 

  21. Boccaccio C, et al. Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature. 1998;391(6664):285–8.

    Article  CAS  PubMed  Google Scholar 

  22. Abella JV, et al. Met/Hepatocyte growth factor receptor ubiquitination suppresses transformation and is required for Hrs phosphorylation. Mol Cell Biol. 2005;25(21):9632–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sadiq AA, Salgia R. MET as a possible target for non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(8):1089–96.

    Article  CAS  Google Scholar 

  24. Birchmeier C, Gherardi E. Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends Cell Biol. 1998;8(10):404–10.

    Article  CAS  PubMed  Google Scholar 

  25. Chmielowiec J, et al. c-Met is essential for wound healing in the skin. J Cell Biol. 2007;177(1):151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mizuno K, et al. Hepatocyte growth factor stimulates growth of hematopoietic progenitor cells. Biochem Biophys Res Commun. 1993;194(1):178–86.

    Article  CAS  PubMed  Google Scholar 

  27. Olivero M, et al. Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br J Cancer. 1996;74(12):1862–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma PC, et al. Functional expression and mutations of c-met and its therapeutic inhibition with SU11274 and small interfering RNA in non–small cell lung cancer. Cancer Res. 2005;65(4):1479.

    Article  CAS  PubMed  Google Scholar 

  29. Sattler M, et al. A novel small molecule met inhibitor induces apoptosis in cells transformed by the oncogenic TPR-MET tyrosine kinase. Cancer Res. 2003;63(17):5462.

    CAS  PubMed  Google Scholar 

  30. Ma PC, et al. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 2003;22(4):309–25.

    Article  CAS  PubMed  Google Scholar 

  31. Jagadeeswaran R, et al. Paxillin is a target for somatic mutations in lung cancer: implications for cell growth and invasion. Cancer Res. 2008;68(1):132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Salgia R, et al. Expression of the focal adhesion protein paxillin in lung cancer and its relation to cell motility. Oncogene. 1999;18(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  33. Wang J, et al. Inhibiting crosstalk between MET signaling and mitochondrial dynamics and morphology: a novel therapeutic approach for lung cancer and mesothelioma. Cancer Biol Ther. 2018:1–10.

    Google Scholar 

  34. Seiwert TY, et al. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 2009;69(7):3021–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sattler M, Salgia R. c-Met and hepatocyte growth factor: potential as novel targets in cancer therapy. Curr Oncol Rep. 2007;9(2):102–8.

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt L, et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997;16(1):68–73.

    Article  CAS  PubMed  Google Scholar 

  37. Ma PC, et al. c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res. 2003;63(19):6272–81.

    CAS  PubMed  Google Scholar 

  38. Krishnaswamy S, et al. Ethnic differences and functional analysis of MET mutations in lung cancer. Clin Cancer Res. 2009;15(18):5714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Salgia R. Role of c-Met in cancer: emphasis on lung cancer. Semin Oncol. 2009;36:S52–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Siddiqui SS, et al. C. elegans as a model organism for in vivo screening in cancer: effects of human c-Met in lung cancer affect C. elegans vulva phenotypes. Cancer Biol Ther. 2008;7(6):856–63.

    Article  CAS  PubMed  Google Scholar 

  41. Lee CC, Yamada KM. Identification of a novel type of alternative splicing of a tyrosine kinase receptor. Juxtamembrane deletion of the c-met protein kinase C serine phosphorylation regulatory site. J Biol Chem. 1994;269(30):19457–61.

    CAS  PubMed  Google Scholar 

  42. Frampton GM, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5(8):850–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kong-Beltran M, et al. Somatic mutations Lead to an oncogenic deletion of met in lung cancer. Cancer Res. 2006;66(1):283.

    Article  CAS  PubMed  Google Scholar 

  44. Tan YH, et al. CBL is frequently altered in lung cancers: its relationship to mutations in MET and EGFR tyrosine kinases. PLoS One. 2010;5(1):e8972.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Tan YC, et al. Differential responsiveness of MET inhibition in non-small-cell lung cancer with altered CBL. Sci Rep. 2017;7(1):9192.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hewelt B, et al. The DNA walk and its demonstration of deterministic Chaos- relevance to genomic alterations in lung cancer. Bioinformatics. 2019. (in press)

    Google Scholar 

  47. Miranda O, Farooqui M, Siegfried JM. Status of agents targeting the HGF/c-Met axis in lung cancer. Cancers. 2018;10(9):280.

    Article  PubMed Central  CAS  Google Scholar 

  48. Engelman JA, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316(5827):1039–43.

    Article  CAS  PubMed  Google Scholar 

  49. Puri N, Salgia R. Synergism of EGFR and c-Met pathways, cross-talk and inhibition, in non-small cell lung cancer. J Carcinog. 2008;7:9.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wakelee HA, et al. A phase Ib/II study of cabozantinib (XL184) with or without erlotinib in patients with non-small cell lung cancer. Cancer Chemother Pharmacol. 2017;79(5):923–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Klempner SJ, et al. Intracranial activity of cabozantinib in MET exon 14-positive NSCLC with brain metastases. J Thorac Oncol. 2017;12(1):152–6.

    Article  PubMed  Google Scholar 

  52. Lara MS, et al. Preclinical evaluation of MET inhibitor INC-280 with or without the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung cancer. Clin Lung Cancer. 2017;18(3):281–5.

    Article  CAS  PubMed  Google Scholar 

  53. Wu YL, et al. Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of Epidermal Growth Factor Receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer. J Clin Oncol. 2018:JCO2018777326.

    Google Scholar 

  54. Nwizu T, et al. Crizotinib (PF02341066) as a ALK /MET inhibitor- special emphasis as a therapeutic drug against lung cancer. Drugs Future. 2011;36(2):91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ou SH, et al. Activity of crizotinib (PF02341066), a dual mesenchymal-epithelial transition (MET) and anaplastic lymphoma kinase (ALK) inhibitor, in a non-small cell lung cancer patient with de novo MET amplification. J Thorac Oncol. 2011;6(5):942–6.

    Article  PubMed  Google Scholar 

  56. Schwab R, et al. Major partial response to crizotinib, a dual MET/ALK inhibitor, in a squamous cell lung (SCC) carcinoma patient with de novo c-MET amplification in the absence of ALK rearrangement. Lung Cancer. 2014;83(1):109–11.

    Article  PubMed  Google Scholar 

  57. Drilon AE, et al. Efficacy and safety of crizotinib in patients (pts) with advanced MET exon 14-altered non-small cell lung cancer (NSCLC). J Clin Oncol. 2016;34(15_suppl):108–108.

    Article  Google Scholar 

  58. Qian F, et al. Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res. 2009;69(20):8009–16.

    Article  CAS  PubMed  Google Scholar 

  59. Leighl NB, et al. A phase I study of foretinib plus erlotinib in patients with previously treated advanced non-small cell lung cancer: Canadian cancer trials group IND.196. Oncotarget. 2017;8(41):69651–62.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Engstrom LD, et al. Glesatinib exhibits antitumor activity in lung cancer models and patients harboring MET exon 14 mutations and overcomes mutation-mediated resistance to type I MET inhibitors in nonclinical models. Clin Cancer Res. 2017;23(21):6661.

    Article  CAS  PubMed  Google Scholar 

  61. Henry RE, et al. Acquired savolitinib resistance in non-small cell lung cancer arises via multiple mechanisms that converge on MET-independent mTOR and MYC activation. Oncotarget. 2016;7(36):57651–70.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Friese-Hamim M, et al. The selective c-Met inhibitor tepotinib can overcome epidermal growth factor receptor inhibitor resistance mediated by aberrant c-Met activation in NSCLC models. Am J Cancer Res. 2017;7(4):962–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Rosen LS, et al. A first-in-human phase I study of a bivalent MET antibody, emibetuzumab (LY2875358), as monotherapy and in combination with erlotinib in advanced cancer. Clin Cancer Res. 2017;23(8):1910.

    Article  CAS  PubMed  Google Scholar 

  64. Wakelee H, et al. Efficacy and safety of onartuzumab in combination with first-line bevacizumab- or pemetrexed-based chemotherapy regimens in advanced non-squamous non-small-cell lung cancer. Clin Lung Cancer. 2017;18(1):50–9.

    Article  CAS  PubMed  Google Scholar 

  65. Spigel DR, et al. Results from the phase III randomized trial of onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIB or IV non–small-cell lung cancer: METLung. J Clin Oncol. 2016;35(4):412–20.

    Article  PubMed  Google Scholar 

  66. Hirsch FR, et al. Efficacy and safety results from a phase II, placebo-controlled study of onartuzumab plus First-line platinum-doublet chemotherapy for advanced squamous cell non-small-cell lung cancer. Clin Lung Cancer. 2017;18(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  67. Tarhini AA, et al. Phase 1/2 study of rilotumumab (AMG 102), a hepatocyte growth factor inhibitor, and erlotinib in patients with advanced non-small cell lung cancer. Cancer. 2017;123(15):2936–44.

    Article  CAS  PubMed  Google Scholar 

  68. Glisson B, et al. A randomized, placebo-controlled, phase 1b/2 study of rilotumumab or ganitumab in combination with platinum-based chemotherapy as first-line treatment for extensive-stage small-cell lung cancer. Clin Lung Cancer. 2017;18(6):615–625 e8.

    Article  CAS  PubMed  Google Scholar 

  69. Strickler JH, et al. Dose-escalation and -expansion study of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, in patients with advanced solid tumors. J Clin Oncol. 2018:JCO2018787697.

    Google Scholar 

  70. Salgia R, Kulkarni P. The genetic/non-genetic duality of drug ‘resistance’ in cancer. Trends Cancer. 2018;4(2):110–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Morgillo F, et al. Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open. 2016:1(3).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Qi J, et al. Multiple mutations and bypass mechanisms can contribute to development of acquired resistance to MET inhibitors. Cancer Res. 2011;71(3):1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cepero V, et al. MET and KRAS gene amplification mediates acquired resistance to MET tyrosine kinase inhibitors. Cancer Res. 2010;70(19):7580.

    Article  CAS  PubMed  Google Scholar 

  74. Shen A, et al. c-Myc alterations confer therapeutic response and acquired resistance to c-met inhibitors in MET-addicted cancers. Cancer Res. 2015;75(21):4548.

    Article  CAS  PubMed  Google Scholar 

  75. Kim S, et al. Acquired resistance of MET-amplified non-small cell lung cancer cells to the MET inhibitor capmatinib. J Korean Cancer Assoc. 2018. (in press).

    Google Scholar 

  76. Bahcall M, et al. Amplification of wild-type KRAS imparts resistance to crizotinib in MET exon 14 mutant non–small cell lung cancer. Clin Cancer Res. 2018;24(23):5963–76.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Suzawa K, et al. Activation of KRAS mediates resistance to targeted therapy in MET exon 14 mutant non-small cell lung cancer. Clin Cancer Res. 2019;25(4):1248–60.

    Article  PubMed  Google Scholar 

  78. Heist RS, et al. Acquired resistance to crizotinib in NSCLC with MET exon 14 skipping. J Thorac Oncol. 2016;11(8):1242–5.

    Article  PubMed  Google Scholar 

  79. Beck A, et al. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010;10:345.

    Article  CAS  PubMed  Google Scholar 

  80. Janetka JW, Jr RAG. Inhibitors of the growth-factor activating proteases matriptase, hepsin and HGFA: strategies for rational drug design and optimization. In: Extracellular targeting of cell signaling in c.ancer. Hoboken, NJ: Wiley; 2018.

    Chapter  Google Scholar 

  81. Kirchhofer D, Eigenbrot C, Lazarus RA. Inhibitory antibodies of the proteases HGFA, matriptase and hepsin. In: Extracellular targeting of cell signaling in cancer. Hoboken, NJ: Wiley; 2018.

    Google Scholar 

  82. Sabari JK, et al. PD-L1 expression, tumor mutational burden, and response to immunotherapy in patients with MET exon 14 altered lung cancers. Ann Oncol. 2018;29(10):2085–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Salgia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nam, A., Salgia, R. (2019). MET as a Therapeutic Target: Have Clinical Outcomes Been “MET” in Lung Cancer?. In: Salgia, R. (eds) Targeted Therapies for Lung Cancer. Current Cancer Research. Springer, Cham. https://doi.org/10.1007/978-3-030-17832-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17832-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17831-4

  • Online ISBN: 978-3-030-17832-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics