Skip to main content

Juvenile Spondyloarthropathies

  • Chapter
  • First Online:
Book cover Pediatric Musculoskeletal Ultrasonography

Abstract

Juvenile idiopathic arthritis (JIA) is an inflammatory rheumatism that begins before the patient is 16 years old. Enthesitis represents 20% of JIA cases. Enthesitis is similar to seronegative spondyloarthropathy in adults, which can evolve from the childhood disease. However, spinal inflammation in children is uncommon compared with adults.

The juvenile spondyloarthropathies are diagnostically challenging. Lower limb arthritis and enthesitis should raise the possibility of a juvenile spondyloarthropathy, because enthesitis is a highly specific feature, and inflammation of the sacroiliac joints is typically seen many years after the onset of clinical symptoms and often difficult to interpret in children. In this chapter, we explain the development of enthesis in children to understand how ultrasound can be useful for the detection of enthesitis and for earlier diagnosis of spondyloarthropathies. Furthermore, even if MRI criteria for sacroiliitis are still missing in children, and despite the fact that classification of juvenile idiopathic arthritis remains unclear for juvenile spondyloarthritis diagnosis, MRI is a key method for the diagnosis of sacroiliitis in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Petty RE, Laxer RM, Lindsley CB, Wedderburn LR. Textbook of pediatric rheumatology. 7th ed. Philadelphia: Elsevier; 2016.

    Google Scholar 

  2. Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J, et al. International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol. 2004;31(2):390–2.

    PubMed  Google Scholar 

  3. Azouz EM, Duffy CM. Juvenile spondyloarthropathies: clinical manifestations and medical imaging. Skelet Radiol. 1995;24:399–408.

    Article  CAS  Google Scholar 

  4. Burgos-Vargas R, Clark P. Axial involvement in the seronegative enthesopathy and arthropathy syndrome and its progression to ankylosing spondylitis. J Rheumatol. 1989;16:192–7.

    CAS  PubMed  Google Scholar 

  5. Hofer M. Spondylarthropathies in children—are they different from those in adults? Best Pract Res Clin Rheumatol. 2006;20:315–28.

    Article  PubMed  Google Scholar 

  6. Weiss PF, Chauvin NA, Klink AJ, Localio R, Feudtner C, Jaramillo D, Colbert RA, Sherry DD, Keren R. Detection of enthesitis in children with enthesitis-related arthritis: dolorimetry compared to ultrasonography. Arthritis Rheumatol. 2014 Jan;66(1):218–27.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Jousse-Joulin S, Breton S, Cangemi C, Fenoll B, Bressolette L, de Parscau L, Saraux A, Devauchelle-Pensec V. Ultrasonography for detecting enthesitis in juvenile idiopathic arthritis. Arthritis Care Res (Hoboken). 2011 Jun;63(6):849–55.

    Article  Google Scholar 

  8. Shenoy S, Aggarwal A. Sonologic enthesitis in children with enthesitis-related arthritis. Clin Exp Rheumatol. 2016 Jan–Feb;34(1):143–7.

    PubMed  Google Scholar 

  9. Burgos-Vargas R, Vazquez-Mellado J. The early clinical recognition of juvenile-onset ankylosing spondylitis and its differentiation from juvenile rheumatoid arthritis. Arthritis Rheum. 1995;38:835–44.

    Article  CAS  PubMed  Google Scholar 

  10. Balint PV, Kane D, Wilson H, McInnes IB, Sturrock RD. Ultrasonography of entheseal insertions in the lower limb in spondyloarthropathy. Ann Rheum Dis. 2002;61:905–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. McGonagle D, Marzo-Ortega H, Benjamin M, Emery P. Report on the second international enthesitis workshop. Arthritis Rheum. 2003;48:896–905.

    Article  PubMed  Google Scholar 

  12. Magni-Manzoni S. Ultrasound in juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2016 May 27;14(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shaw HM, Vázquez OT, McGonagle D, Bydder G, Santer RM, Benjamin M. Development of the human Achilles tendon enthesis organ. J Anat. 2008 Dec;213(6):718–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grechenig W, Mayr JM, Peicha G, Hammerl R, Schatz B, Grechenig S. Sonoanatomy of the Achilles tendon insertion in children. J Clin Ultrasound. 2004;32(7):338–43.

    Article  PubMed  Google Scholar 

  15. Jousse-Joulin S, Cangemi C, Gerard S, Gestin S, Bressollette L, de Parscau L, Devauchelle-Pensec V, Saraux A. Normal sonoanatomy of the paediatric entheses including echostructure and vascularisation changes during growth. Eur Radiol. 2015 Jul;25(7):2143–52.

    Article  PubMed  Google Scholar 

  16. Chauvin NA, Ho-Fung V, Jaramillo D, Edgar JC, Weiss PF. Ultrasound of the joints and entheses in healthy children. Pediatr Radiol. 2015 Aug;45(9):1344–54.

    Article  PubMed  Google Scholar 

  17. Roth J, Ravagnani V, Backhaus M, Balint P, Bruns A, Bruyn GA, Collado P, De la Cruz L, Guillaume-Czitrom S, Herlin T, Hernandez C, Iagnocco A, Jousse-Joulin S, Lanni S, Lilleby V, Malattia C, Magni-Manzoni S, Modesto C, Rodriguez A, Nieto JC, Ohrndorf S, Rossi-Semerano L, Selvaag AM, Swen N, Ting TV, Tzaribachev N, Vega-Fernandez P, Vojinovic J, Windschall D, D’Agostino MA, Naredo E, OMERACT ultrasound group. Preliminary definitions for the sonographic features of synovitis in children. Arthritis Care Res (Hoboken). 2017 Aug;69(8):1217–23.

    Article  Google Scholar 

  18. Roth J, Jousse-Joulin S, Magni-Manzoni S, Rodriguez A, Tzaribachev N, Iagnocco A, Naredo E, D’Agostino MA, Collado P, Outcome Measures in Rheumatology Ultrasound Group. Definitions for the sonographic features of joints in healthy children. Arthritis Care Res (Hoboken). 2015 Jan;67(1):136–42.

    Article  Google Scholar 

  19. Benjamin M, Moriggl B, Brenner E, et al. The “enthesis organ” concept: why enthesopathies may not present as focal insertional disorders. Arthritis Rheum. 2004;50:3306–13.

    Article  CAS  PubMed  Google Scholar 

  20. Petty R, Cassidy JT. Juvenile ankylosing spondylitis. In: Textbook of pediatric rheumatology. 4th ed. Philadelphia: WB Saunders; 2001. p. 323–44.

    Google Scholar 

  21. Walker J, Rang M, Daneman A. Ultrasonography of the unossified patella in young children. J Pediatr Orthop. 1991;11:100–92.

    Article  CAS  PubMed  Google Scholar 

  22. Blazina M, Kerlan RK, Jobe F, et al. Jumper’s knee. Orthop Clin North Am. 1973;4:665–78.

    CAS  PubMed  Google Scholar 

  23. Gisslen K, Alfredson H. Neovascularisation and pain in jumper’s knee: a prospective clinical and sonographic study in elite junior volleyball players. Br J Sports Med. 2005;39:423–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Terslev L, Qvistgaard E, Torp-Pedersen S, et al. Ultrasound and power Doppler findings in jumper’s knee. Preliminary observations. Eur J Ultrasound. 2001;13:183–9.

    Article  CAS  PubMed  Google Scholar 

  25. Davies S, Baudonin CJ, King JB, Perry JD. Ultrasound, computed tomography and magnetic resonance imaging in patellar tendonitis. Clin Radiol. 1991;43:52.

    Article  CAS  PubMed  Google Scholar 

  26. McLoughlin R, Raber EL, Vellet AD, et al. Patellar tendinitis: MR imaging features, with suggested pathogenesis and proposed classification. Radiology. 1995;197:843–8.

    Article  CAS  PubMed  Google Scholar 

  27. Ehrenborg G, Engfeldt B. The insertion of the ligamentum patellae on the tibial tuberosity. Some views in connection with the Osgood-Schlatter lesion. Acta Chir Scand. 1961;121(Jun–Jul):491–9.

    CAS  PubMed  Google Scholar 

  28. Ogden JA, Southwick WO. Osgood-Schlatter’s disease and tibial tuberosity development. Clin Orthop Relat Res. 1976;116:180–9.

    Google Scholar 

  29. Spannow AH, Pfeiffer-Jensen M, Andersen NT, et al. Ultrasonographic measurements of joint cartilage thickness in healthy children: age- and sex-related standard reference values. J Rheumatol. 2010;37:2595–601.

    Article  PubMed  Google Scholar 

  30. Pradsgaard D, Spannow AH, Heuck CW, et al. Joint cartilage thickness measured by ultrasound in juvenile idiopathic arthritis. Pediatr Rheumatol. 2012;10(Suppl 1):A35.

    Article  Google Scholar 

  31. Basra HAS, Humphries PD. Juvenile idiopathic arthritis: what is the utility of ultrasound? Br J Radiol. 2017;90:20160920.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wakefield RJ, Balint PV, Szkudlarek M, et al. Musculoskeletal ultrasound including definitions for ultrasonographic pathology. J Rheumatol. 2005;32:2485–7.

    PubMed  Google Scholar 

  33. Colebatch-Bourn AN, Edwards CJ, Collado P, et al. EULAR-PRes points to consider for the use of imaging in the diagnosis and management of juvenile idiopathic arthritis in clinical practice. Ann Rheum Dis. 2015;74:1946–57.

    Article  CAS  PubMed  Google Scholar 

  34. Uson J, Loza E, Möller, et al. Recommendations for the use of ultrasound and magnetic resonance in patients with spondyloarthritis, including psoriatic arthritis, and patients with juvenile idiopathic arthritis. Reumatol Clin. 2018;14(1):27–35.

    Article  PubMed  Google Scholar 

  35. Nguyen JC, Lee KS, Thapa, et al. US evaluation of juvenile idiopathic arthritis and osteoarticular infection. Radiographics. 2017;37(4):1181–201.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Erik Nielsen H, Strandberg C, Andersen S, et al. Ultrasonographic examination in juvenile idiopathic arthritis is better than clinical examination for identification of intraarticular disease. Dan Med J. 2013;60:3.

    Google Scholar 

  37. Magni-Manzoni S, Epis O, Ravelli A, et al. Comparison of clinical versus ultrasound-determined synovitis in juvenile idiopathic arthritis. Arthritis Care Res. 2009;61:1497–504.

    Article  Google Scholar 

  38. Haslam KE, McCann LJ, Wyatt S, et al. The detection of subclinical synovitis by ultrasound in oligoarticular juvenile idiopathic arthritis: a pilot study. Rheumatology (Oxford). 2010;49:123.

    Article  Google Scholar 

  39. Shelmerdine SC, Di Paolo PL, Tanturri de Horatio L, et al. Imaging of the hip in juvenile idiopathic arthritis. Pediatr Radiol. 2018;48(6):811–7.

    Article  PubMed  Google Scholar 

  40. Rooney ME, McAllister C, Burns JF. Ankle disease in juvenile idiopathic arthritis: ultrasound findings in clinically swollen ankles. J Rheumatol. 2009;36:1725–9.

    Article  PubMed  Google Scholar 

  41. Janow GL, Panghaal V, Trinh A, et al. Detection of active disease in juvenile idiopathic arthritis: sensitivity and specificity of the physical examination vs ultrasound. J Rheumatol. 2011;38:2671–4.

    Article  PubMed  Google Scholar 

  42. Shahin AA, Shaker OG, Kamal N, et al. Circulating interleukin-6, soluble interleukin-2 receptors, tumor necrosis factor alpha, and interleukin-10 levels in juvenile chronic arthritis: correlations with soft tissue vascularity assessed by power Doppler sonography. Rheumatol Int. 2002;22:84–8.

    Article  CAS  PubMed  Google Scholar 

  43. Magni-Manzoni S, Scire CA, Ravelli A, et al. Ultrasound-detected synovial abnormalities are frequent in clinically inactive juvenile idiopathic arthritis, but do not predict a flare of synovitis. Ann Rheum Dis. 2013;72:223–8.

    Article  PubMed  Google Scholar 

  44. Zhao Y, Rascoff NE, Iyer RS, et al. Flares of disease in children with clinically inactive juvenile idiopathic arthritis were not correlated with ultrasound findings. J Rheumatol. 2018;45(6):851–7.

    Article  PubMed  Google Scholar 

  45. Miotto E, Silva VB, Mitraud SAV, Furtado, et al. Patients with juvenile idiopathic arthritis in clinical remission with positive power Doppler signal in joint ultrasonography have an increased rate of clinical flare: a prospective study. Pediatr Rheumatol Online J. 2017;15(1):80.

    Article  Google Scholar 

  46. De Lucia O, Ravagnani V, Pregnolato, et al. Baseline ultrasound examination as possible predictor of relapse in patients affected by juvenile idiopathic arthritis (JIA). Ann Rheum Dis. 2018;77:1426–31.

    PubMed  Google Scholar 

  47. Court-Payen M, Nielsen S, Zak M, et al. Ultrasonography and color Doppler in juvenile idiopathic arthritis: diagnosis and follow-up of ultrasound-guided steroid injection in the ankle region. A descriptive interventional study. Pediatr Rheumatol Online J. 2011;9:4.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Laurell L, Court-Payen M, Nielsen S, et al. Ultrasonography and color Doppler in juvenile idiopathic arthritis: diagnosis and follow-up of ultrasound-guided steroid injection in the wrist region. A descriptive interventional study. Pediatr Rheumatol Online J. 2012;10:11.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Peters SE, Laxer RM, Connolly BL, Parra DA. Ultrasound-guided steroid tendon sheath injections in juvenile idiopathic arthritis: a 10-year single-center retrospective study. Pediatr Rheumatol Online J. 2017;15(1):22.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lovell DJ, Giannini EH, Reiff A, et al. Etanercept in children with polyarticular juvenile rheumatoid arthritis. N Engl J Med. 2000;342:763–9.

    Article  CAS  PubMed  Google Scholar 

  51. Lanni S, van Dijkhuizen EHP, Vanoni F, et al. Ultrasound changes in synovial abnormalities induced by treatment in juvenile idiopathic arthritis. Clin Exp Rheumatol. 2018;36(2):329–34.

    PubMed  Google Scholar 

  52. Burgos-Vargas R, et al. Pediatr Rheumatol. 2012;10:14.

    Article  Google Scholar 

  53. Goirand M, Breton S, Chevallier F, et al. Clinical features of children with enthesitis-related juvenile idiopathic arthritis/juvenile spondyloarthritis followed in a French tertiary care pediatric rheumatology centre. Pediatr Rheumatol. 2018;16:21.

    Article  Google Scholar 

  54. Stone M, Warren RW, Bruckel J, et al. Juvenile-onset ankylosing spondylitis is associated with worse functional outcomes than adult-onset ankylosing spondylitis. Arthritis Rheum. 2005;53(3):445–51.

    Article  PubMed  Google Scholar 

  55. Bou Antoun M, Adamsbaum C, Semerano L, et al. Clinical predictors of magnetic resonance imaging-detected sacroiliitis in children with enthesitis related arthritis. Joint Bone Spine. 2017;84:699–702.

    Article  PubMed  Google Scholar 

  56. Stoll ML, Bhore R, Dempsey-Robertson M, Punaro M. Spondyloarthritis in a pediatric population: risk factors for sacroiliitis. J Rheumatol. 2010;37(11):2042–8.

    Article  Google Scholar 

  57. Weiss PF, Xiao R, Biko DM, Chauvin NA. Assessment of Sacroiliitis at diagnosis of juvenile spondyloarthritis by radiography, magnetic resonance imaging, and clinical examination. Arthritis Care Res (Hoboken). 2016;68:187–94.

    Article  CAS  Google Scholar 

  58. Jans L, Egund N, Eshed I, et al. Sacroiliitis in axial spondyloarthritis: assessing morphology and activity. Semin Musculoskelet Radiol. 2018;22(2):180–8.

    Article  PubMed  Google Scholar 

  59. Egund N, Juik AG. Anatomy and histology of the sacroiliac joints. Semin Musculoskelet Radiol. 2014;18(03):332–9.

    Article  PubMed  Google Scholar 

  60. Puhakka KB, Melsen F, Jurik AG, et al. MR imaging of the normal sacroiliac joint with correlation to histology. Skelet Radiol. 2004;33(01):15–28.

    Article  CAS  Google Scholar 

  61. El Rafei M, Badr S, Lefebvre G, et al. Sacroiliac joints: anatomical variations on MR images. Eur Radiol. 2018 Jun 6; https://doi.org/10.1007/s00330-018-5540-x.

    Article  PubMed  Google Scholar 

  62. De Winter J, de Hooge M, van de Sande M, et al. Magnetic resonance imaging of the sacroiliac joints indicating sacroiliitis according to the assessment of spondyloarthritis international society definition in healthy individuals, runners, and women with postpartum back pain. Arthritis Rheumatol. 2018 Mar 7; https://doi.org/10.1002/art.40475.

    Article  Google Scholar 

  63. Bollow M, Braun J, Kannenberg J, et al. Normal morphology of sacroiliac joints in children: magnetic resonance studies related to age and sex. Skelet Radiol. 1997;26:697–704.

    Article  CAS  Google Scholar 

  64. Zejden A, Jurik AG. Anatomy of the sacroiliac joints in children and adolescents by computed tomography. Pediatr Rheumatol. 2017;15:82.

    Article  Google Scholar 

  65. Maksymowych WP, Lambert RG, Østergaard M, et al. MRI lesion definitions in axial spondyloarthritis: a consensus reappraisal from the assessments in spondyloarthritis international society (ASAS). Ann Rheum Dis. 2018;77:356–7.

    Google Scholar 

  66. Lambert GW, Bakker PA, Van der Heijde D, Weber U, Rudwaleit M, et al. Defining active sacroiliitis on MRI for classification of axial spondyloarthritis: update by the ASAS MRI working group. Ann Rheum Dis. 2016;75:1958–63.

    Article  PubMed  Google Scholar 

  67. Rudweileit M, Jurik AG, Hermann KG, et al. Defining active sacroiliitis on magnetic resonance imaging (MRI) for classification of axial spondyloarthritis: a consensual approach by the ASAS/OMERACT MRI group. Ann Rheum Dis. 2009;68(10):1520–7.

    Article  Google Scholar 

  68. Laloo F, Herregods N, Varkas G, et al. MR signals in the sacroiliac joint space in spondyloarthritis: a new sign. Eur Radiol. 2017;27(05):2024–30.

    Article  PubMed  Google Scholar 

  69. Herregods N, Dehoorne J, Van den Bosch F, et al. ASAS definition for sacroiliitis on MRI in SpA: applicable to children? Pediatr Rheumatol. 2017;15:24.

    Article  Google Scholar 

  70. Strom H, Lindvall N, Hellstrom B, Rosenthal L. Clinical, HLA, and roentgenological follow up study of patients with juvenile arthritis: comparison between the long term outcome of transient and persistent arthritis in children. Ann Rheum Dis. 1989;48:918–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bollow M, Braun J, Biedermann T, et al. Use of contrast-enhanced MR imaging to detect sacroiliitis in children. Skelet Radiol. 1998;27:606–16.

    Article  CAS  Google Scholar 

  72. Jaremko JL, Liu L, Winn NJ, et al. Diagnostic utility of magnetic resonance imaging and radiography in juvenile spondyloarthritis: evaluation of the sacroiliac joints in controls and affected subjects. J Rheumatol. 2014;41(5):963–70.

    Article  PubMed  Google Scholar 

  73. Herregods N, Dehoorne J, Pattyn E, et al. Diagnositic value of pelvic enthesitis on MRI of the sacroiliac joints in enthesitis related arthritis. Pediatr Rheumatol. 2015;13:46.

    Article  CAS  Google Scholar 

  74. Sieper J, Rudwaleit M, Baraliakos X, et al. The assessment of spondyloarthritis international society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis. 2009;68:ii1–44E.

    PubMed  Google Scholar 

  75. Yilmaz MH, Ozbayrak M, Kasapcopur O, et al. Pelvic MRI findings of juvenile-onset ankylosing spondylitis. Clin Rheumatol. 2010;29(9):1007–13.

    Article  PubMed  Google Scholar 

  76. Lin C, MacKenzie JD, Courtier JL, et al. Magnetic resonance imaging findings in juvenile spondyloarthropathy and effects of treatment observed on subsequent imaging. Pediatr Rheumatol. 2014;12:25.

    Article  Google Scholar 

  77. Vendhan K, Sen D, Fisher C, et al. Inflammatory changes of the lumbar spine in children and adolescents with enthesitis-related arthritis: magnetic resonance imaging findings. Arthritis Care Res. 2014;66(1):40–6.

    Article  Google Scholar 

  78. Herregods N, Jaremko JL, Baraliakos X, et al. Limited role of gadolinium to detect active sacroiliitis on MRI in juvenile spondyloarthritis. Skelet Radiol. 2015;44(11):1637–46.

    Article  CAS  Google Scholar 

  79. Weiss PF, Xiao R, Biko DM, et al. Detection of inflammatory sacroiliitis in children with magnetic resonance imaging: is gadolinium contrast enhancement necessary? Arthritis Rheumatol. 2015;67(8):2250–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vendhan K, Bray TJ, Atkinson D, et al. A diffusion-based quantification technique for assessment of sacroiliitis in adolescents with enthesitis-related arthritis. Br J Radiol. 2016;89(1059):20150775.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pasquini L, Napolitano A, Visconti E, et al. Gadolinium-based contrast agent-related toxicities. CNS Drugs. 2018;32(3):229–40.

    Article  CAS  PubMed  Google Scholar 

  82. Soares BP, Lequin MH, Huisman TAGM. Safety of contrast material use in children. Magn Reson Imaging Clin N Am. 2017;25(4):779–85.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jousse-Joulin Sandrine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laurence, G., Sandrine, JJ. (2020). Juvenile Spondyloarthropathies. In: El Miedany, Y. (eds) Pediatric Musculoskeletal Ultrasonography. Springer, Cham. https://doi.org/10.1007/978-3-030-17824-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17824-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17823-9

  • Online ISBN: 978-3-030-17824-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics