Skip to main content

Understanding Soil-Contaminant Interactions: A Key to Improved Groundwater Quality

  • Chapter
  • First Online:
Women in Water Quality

Part of the book series: Women in Engineering and Science ((WES))

  • 557 Accesses

Abstract

Understanding the speciation of metal contaminants and their interactions with soils, sediments, and hazardous waste is critical both to predicting their mobility in the subsurface and to devising successful remediation approaches. Experimental-spectroscopic techniques and geochemical modeling can be coupled toward the study of metal interactions. This chapter will discuss contributions of infrared and X-ray-based techniques to study of the speciation of hexavalent chromium in two media: a Cr(VI)-contaminated soil from a plating facility and pure iron oxides—minerals that are abundant in natural soil environments, including the plating facility. The use of these techniques to inform treatment design and fate and transport models will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Samad H, Watson PR (1997) An XPS study of the adsorption of chromate on goethite (α-FeOOH). Appl Surf Sci 108:371–377

    Article  Google Scholar 

  2. Chrysochoou M, Dermatas D (2006) Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: literature review and experimental study. J Hazard Mater 136(1):20–33

    Article  Google Scholar 

  3. Chrysochoou M, Ting A (2011) A kinetic study of Cr(VI) reduction by calcium polysulfide. Sci Total Environ 409:4072–4077

    Article  Google Scholar 

  4. Chrysochoou M, Ferreira D, Johnston C (2010) Calcium polysulfide treatment of Cr contaminated soil. J Hazard Mater 179:650–657

    Article  Google Scholar 

  5. Chrysochoou M, Johnston C, Dahal G (2012) A comparative evaluation of Cr(VI) treatment in contaminated soil by calcium polysulfide and nanoscale zero valent iron. J Hazard Mater 201–202:33–42

    Article  Google Scholar 

  6. Chrysochoou M, Theologou E, Bompoti N, Dermatas D, Panagiotakis I (2016) Occurrence, origin and transformation processes of geogenic chromium in soils and sediments. Curr Pollut Rep 2(4):224–235

    Article  Google Scholar 

  7. Davis JA, James RO, Leckie JO (1978) Surface ionization and complexation at the oxide/water interface. J Colloid Interface Sci 63:480–499

    Article  Google Scholar 

  8. Dermatas D, Chrysochoou M, Moon DH, Grubb DG, Wazne M, Christodoulatos C (2006) Ettringite-induced heave in chromite ore processing residue (COPR) upon ferrous sulfate treatment. Environ Sci Technol 40(18):5786–5792

    Article  Google Scholar 

  9. Du J, Lu J, Wu Q, Jing C (2012) Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron. J Hazard Mater 215–216:152–158

    Article  Google Scholar 

  10. Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. John Wiley & Sons, New York

    Google Scholar 

  11. Fendorf SE (1995) Surface reactions of chromium in soils and waters. Geoderma 67:55–71

    Article  Google Scholar 

  12. Fendorf S, Eick MJ, Grossl P, Sparks DL (1997) Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ Sci Technol 31:315–320

    Article  Google Scholar 

  13. Goldberg S, Criscenti LJ, Turner DR, Davis JA, Cantrell JK (2007) Adsorption-desorption processes in subsurface reactive transport modeling. Vadose Zone J 6:407–435

    Article  Google Scholar 

  14. Gu C, Wang Z, Kubicki JD, Wang X, Zhu M (2016) X-ray absorption spectroscopic quantification and speciation modeling of sulfate adsorption on ferrihydrite surfaces. Environ Sci Technol 50(15):8067–8076

    Article  Google Scholar 

  15. Gustafsson JP, Persson I, Oromieh AG, van Schaik JW, Sjöstedt C, Kleja DB (2014) Chromium(III) complexation to natural organic matter: mechanisms and modeling. Environ Sci Technol 48(3):1753–1761. https://doi.org/10.1021/es404557e. Epub 2014 Jan 22

    Article  Google Scholar 

  16. Hiemstra T, Van Riemsdijk W (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J Colloid Interface Sci 179:488–508

    Article  Google Scholar 

  17. Hsia TH, Lo SL, Lin CF, Lee DY (1993) Chemical and spectroscopic evidence for specific adsorption of chromate on hydrous iron oxide. Chemosphere 26:1897–1904

    Article  Google Scholar 

  18. Johnston CP, Chrysochoou M (2012) Investigation of chromate coordination on ferrihydrite by in situ ATR-FTIR spectroscopy and theoretical frequency calculations. Environ Sci Technol 46(11):5851–5858

    Article  Google Scholar 

  19. Johnston CP, Chrysochoou M (2014) Mechanisms of chromate adsorption on hematite. Geochim Cosmochim Acta 138:146–157

    Article  Google Scholar 

  20. Johnston CP, Chrysochoou M (2015) Mechanisms of chromate adsorption on boehmite. J Hazard Mater 281:56–63

    Article  Google Scholar 

  21. Johnston C, Chrysochoou M (2016) Mechanisms of chromate, selenate, and sulfate adsorption on Al-substituted ferrihydrite: implications for ferrihydrite surface structure and reactivity. Environ Sci Technol 50(7):3589–3596

    Article  Google Scholar 

  22. Kabengi N, Chrysochoou M, Bompoti N, Kubicki J (2017) An integrated flow microcalorimetry, infrared spectroscopy and density functional theory approach to the study of chromate complexation on hematite and ferrihydrite. Chem Geol 464:23–33

    Article  Google Scholar 

  23. Matern K, Kletti H, Mansfeld T (2016) Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites. J Hazard Mater 155:188–195

    Google Scholar 

  24. Oze C, Fendorf S, Bird KD, Coleman GR (2004) Chromium geochemistry of serpentine soils. Int Geol Rev 46:97–126

    Article  Google Scholar 

  25. Peak D, Elzinga EJ, Sparks DL (2001) Understanding sulfate adsorption mechanisms on iron(III) oxides and hydroxides: results from ATR-FTIR spectroscopy. In: Selim HM, Sparks DL (eds) Heavy metals release in soils. Lewis Publishers, Boca Raton

    Google Scholar 

  26. Rai D, Eary LE, Zachara JM (1989) Environmental chemistry of chromium. Sci Total Environ 86:15–23

    Article  Google Scholar 

  27. Sparks DL (2003) Environmental soil chemistry. Elsevier Academic Press, San Diego

    Book  Google Scholar 

  28. Sposito G (1989) The chemistry of soils. Oxford University Press, New York

    Google Scholar 

  29. Stumm W, Kummert R, Sigg LM (1980) A ligand exchange model for the adsorption of inorganic and organic ligands at hydrous oxide interfaces. Croat Chem Acta 53:291–312

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Chrysochoou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chrysochoou, M. (2020). Understanding Soil-Contaminant Interactions: A Key to Improved Groundwater Quality. In: O’Bannon, D. (eds) Women in Water Quality. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-030-17819-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17819-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17818-5

  • Online ISBN: 978-3-030-17819-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics