Skip to main content

Automatic Nucleus Segmentation with Mask-RCNN

  • Conference paper
  • First Online:
Advances in Computer Vision (CVC 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 944))

Included in the following conference series:

Abstract

Mask-RCNN is a recently proposed state-of-the-art algorithm for object detection, object localization, and object instance segmentation of natural images. In this paper, it is demonstrated that Mask-RCNN can be used to perform highly effective and efficient automatic segmentations of a wide range of microscopy images of cell nuclei, for a variety of cells acquired under a variety of conditions. In addition, it is shown that a cyclic learning rate regime allows effective training of a Mask-RCNN model without any need to finetune the learning rate, thereby eliminating a manual and time-consuming aspect of the training procedure. The results presented here will be of interest to those in the medical imaging field and to computer vision researchers more generally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1, pp. 1097–1105. Curran Associates Inc., USA (2012)

    Google Scholar 

  2. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556 (2014)

    Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR, abs/1512.03385 (2015)

    Google Scholar 

  4. Zagoruyko, S., Lerer, A., Lin, T.-Y., Pinheiro, P.H.O., Gross, S., Chintala, S., Dollár, P.: A multipath network for object detection. CoRR, abs/1604.02135 (2016)

    Google Scholar 

  5. Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016). 20th Conference on Medical Image Understanding and Analysis (MIUA 2016)

    Google Scholar 

  6. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)

    Article  Google Scholar 

  7. Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep Feature Learning for Knee Cartilage Segmentation Using a Triplanar Convolutional Neural Network, pp. 246–253. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Tran, P.V.: A fully convolutional neural network for cardiac segmentation in short-axis MRI. CoRR, abs/1604.00494 (2016)

    Google Scholar 

  9. Christ, P.F., Ettlinger, F., Grün, F., Elshaer, M.E.A., Lipková, J., Schlecht, S., Ahmaddy, F., Tatavarty, S., Bickel, M., Bilic, P., Rempfler, M., Hofmann, F., D’Anastasi, M., Ahmadi, S.-A., Kaissis, G., Holch, J., Sommer, W.H., Braren, R., Heinemann, V., Menze, B.H.: Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. CoRR, abs/1702.05970 (2017)

    Google Scholar 

  10. Zhu, W., Xiang, X., Tran, T.D., Hager, G.D., Xie, X.: Adversarial deep structured nets for mass segmentation from mammograms. CoRR, abs/1710.09288 (2017)

    Google Scholar 

  11. Kabani, A., El-Sakka, M.R.: Ejection fraction estimation using a wide convolutional neural network. In: Karray, F., Campilho, A., Cheriet, F., (eds.) Image Analysis and Recognition, pp. 87–96. Springer, Cham (2017)

    Google Scholar 

  12. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  13. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  14. Girshick, R.: Fast R-CNN. arXiv preprint arXiv:1504.08083 (2015)

  15. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR, abs/1506.01497 (2015)

    Google Scholar 

  16. Lin, T.-Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. CoRR, abs/1612.03144 (2016)

    Google Scholar 

  17. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2017)

    Google Scholar 

  18. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: CVPR, July 2017

    Google Scholar 

  19. Lin, T.-Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. CoRR, abs/1708.02002 (2017)

    Google Scholar 

  20. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)

    Google Scholar 

  21. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv (2018)

    Google Scholar 

  22. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector (2016), to appear

    Chapter  Google Scholar 

  23. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI). LNCS, vol. 9351, pp. 234–241. Springer (2015)

    Google Scholar 

  24. Han, Y., Ye, J.C.: Framing U-Net via deep convolutional framelets: application to sparse-view CT. CoRR, abs/1708.08333 (2017)

    Google Scholar 

  25. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016, pp. 424–432. Springer, Cham (2016)

    Chapter  Google Scholar 

  26. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. CoRR, abs/1703.06870 (2017)

    Google Scholar 

  27. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, J., Ramanan, D., Dollár, P., Lawrence Zitnick, C.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision–ECCV 2014, pp. 740–755. Springer, Cham (2014)

    Google Scholar 

  28. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: European Conference on Computer Vision, pp. 694–711. Springer (2016)

    Google Scholar 

  29. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  30. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(Dec), 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Girshick, R., Radosavovic, I., Gkioxari, G., Dollár, P., He, K.: Detectron (2018). https://github.com/facebookresearch/detectron

  32. Mask-RCNN. https://github.com/matterport/Mask_RCNN. Accessed 27 Apr 2018

  33. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  34. Smith, L.N.: No more pesky learning rate guessing games. CoRR, abs/1506.01186 (2015)

    Google Scholar 

  35. Smith, L.N.: A disciplined approach to neural network hyper-parameters: part 1-learning rate, batch size, momentum, and weight decay. CoRR, abs/1803.09820 (2018)

    Google Scholar 

  36. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36, 03 (2017)

    Article  Google Scholar 

  37. Gelasca, E.D., Obara, B., Fedorov, D., Kvilekval, K., Manjunath, B.S.: A biosegmentation benchmark for evaluation of bioimage analysis methods. BMC Bioinf. 10(1), 368 (2009)

    Article  Google Scholar 

  38. Cheng, J., Rajapakse, J.C., et al.: Segmentation of clustered nuclei with shape markers and marking function. IEEE Trans. Biomed. Eng. 56(3), 741–748 (2009)

    Article  Google Scholar 

  39. Ljosa, V., Sokolnicki, K.L., Carpenter, A.E.: Annotated high-throughput microscopy image sets for validation. Nat. Methods 9, 637 (2012)

    Article  Google Scholar 

  40. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org

  41. Chollet, F., et al.: Keras (2015). https://keras.io

  42. Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)

Download references

Acknowledgments

The author would like to thank NVIDIA Corp. for GPU donation to support this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremiah W. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Johnson, J.W. (2020). Automatic Nucleus Segmentation with Mask-RCNN. In: Arai, K., Kapoor, S. (eds) Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing, vol 944. Springer, Cham. https://doi.org/10.1007/978-3-030-17798-0_32

Download citation

Publish with us

Policies and ethics