Skip to main content

An Attention-Based CNN for ECG Classification

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 943))

Abstract

The paper considers the problem of improving the interpretability of a convolutional neural network on the example of ECG classification task. This is done by using an architecture based on attention modules. Each module generates a mask that selects only those features that are required to make the final prediction. By visualizing these masks, areas of the signal that are important for decision-making can be identified. The model was trained both on raw signals and on their logarithmic spectrograms. In the case of raw signals, generated masks did not perform any meaningful feature maps filtering, but in the case of spectrograms, interpretable masks responsible for noise reduction and arrhythmic parts detection were obtained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.-K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  2. Clifford, G., Liu, C., Moody, B., Lehman, L.H., Silva, I., Li, Q., Johnson, A., Mark, R.G.: AF classification from a short single lead ECG recording: the PhysioNet computing in cardiology challenge 2017. Comput. Cardiol. 44 (2017)

    Google Scholar 

  3. Moody, G.B., Mark, R.G.: A new method for detecting atrial fibrillation using R-R intervals. Comput. Cardiol. 10, 227–230 (1983)

    Google Scholar 

  4. Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X.: Residual attention network for image classification. ArXiv e-prints, April 2017

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. ArXiv e-prints, December 2015

    Google Scholar 

  6. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: International Conference on Machine Learning (2010)

    Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. ArXiv e-prints, February 2015

    Google Scholar 

  9. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. ArXiv e-prints, December 2014

    Google Scholar 

  11. Khudorozhkov, R., Illarionov, E., Kuvaev, A., Podvyaznikov, D.: CardIO library for deep research of heart signals (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kuvaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuvaev, A., Khudorozhkov, R. (2020). An Attention-Based CNN for ECG Classification. In: Arai, K., Kapoor, S. (eds) Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing, vol 943. Springer, Cham. https://doi.org/10.1007/978-3-030-17795-9_49

Download citation

Publish with us

Policies and ethics