Skip to main content

Illumination-Invariant Face Recognition by Fusing Thermal and Visual Images via Gradient Transfer

  • Conference paper
  • First Online:
Advances in Computer Vision (CVC 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 943))

Included in the following conference series:

Abstract

Face recognition in real life situations like low illumination condition is still an open challenge in biometric security. It is well established that the state-of-the-art methods in face recognition provide low accuracy in the case of poor illumination. In this work, we propose an algorithm for a more robust illumination invariant face recognition using a multi-modal approach. We propose a new dataset consisting of aligned faces of thermal and visual images of a hundred subjects. We then apply face detection on thermal images using the biggest blob extraction method and apply them for fusing images of different modalities for the purpose of face recognition. An algorithm is proposed to implement fusion of thermal and visual images. We reason for why relying on only one modality can give erroneous results. We use a lighter and faster CNN model called MobileNet for the purpose of face recognition with faster inferencing and to be able to use it in real time biometric systems. We test our proposed method on our own created dataset to show that real-time face recognition on fused images shows far better results than using visual or thermal images separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ekenel, H.K., Stallkamp, J., Gao, H., Fischer, M., Stiefelhagen, R.: Face recognition for smart interactions. In: 2007 IEEE International Conference on Multimedia and Expo, pp. 1007–1010. IEEE (2007)

    Google Scholar 

  2. Pentland, A., Choudhury, T.: Face recognition for smart environments. Computer 33(2), 50–55 (2000)

    Article  Google Scholar 

  3. Galton, F.: Personal identification and description. J. Anthropol. Inst. Great Br. Irel. 18, 177–191 (1889)

    Article  Google Scholar 

  4. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. Yale University New Haven United States, Technical report (1997)

    Article  Google Scholar 

  5. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.-J.: Face recognition using Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)

    Article  Google Scholar 

  6. Gao, Y., Leung, M.K.: Face recognition using line edge map. IEEE Trans. Pattern Anal. Mach. Intell. 24, 764–779 (2002)

    Article  Google Scholar 

  7. Kirby, M., Sirovich, L.: Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 103–108 (1990)

    Article  Google Scholar 

  8. Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Trans. Neural Netw. 13(6), 1450 (2002)

    Article  Google Scholar 

  9. Adini, Y., Moses, Y., Ullman, S.: Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 721–732 (1997)

    Article  Google Scholar 

  10. Wen, D., Han, H., Jain, A.K.: Face spoof detection with image distortion analysis. IEEE Trans. Inf. Forensics Secur. 10(4), 746–761 (2015)

    Article  Google Scholar 

  11. Cutler, R.G.: Face recognition using infrared images and eigenfaces. University of Maryland (1996)

    Google Scholar 

  12. Bebis, G., Gyaourova, A., Singh, S., Pavlidis, I.: Face recognition by fusing thermal infrared and visible imagery. Image Vis. Comput. 24(7), 727–742 (2006)

    Article  Google Scholar 

  13. Socolinsky, D.A., Selinger, A., Neuheisel, J.D.: Face recognition with visible and thermal infrared imagery. Comput. Vis. Image Underst. 91(1–2), 72–114 (2003)

    Article  Google Scholar 

  14. Forczmański, P.: Human face detection in thermal images using an ensemble of cascading classifiers. In: International Multi-Conference on Advanced Computer Systems, pp. 205–215. Springer (2016)

    Google Scholar 

  15. Wong, W.K., Hui, J.H., Desa, J.B.M., Ishak, N.I.N.B., Sulaiman, A.B., Nor, Y.B.M.: Face detection in thermal imaging using head curve geometry. In: 5th International Congress on Image and Signal Processing (CISP), pp. 881–884. IEEE (2012)

    Google Scholar 

  16. Selinger, A., Socolinsky, D.A.: Appearance-based facial recognition using visible and thermal imagery: a comparative study. Technical report, EQUINOX CORP NEW YORK NY (2006)

    Google Scholar 

  17. Nguyen, H., Kotani, K., Chen, F., Le, B.: A thermal facial emotion database and its analysis. In: Pacific-Rim Symposium on Image and Video Technology, pp. 397–408. Springer (2013)

    Google Scholar 

  18. Wang, S., Liu, Z., Lv, S., Lv, Y., Wu, G., Peng, P., Chen, F., Wang, X.: A natural visible and infrared facial expression database for expression recognition and emotion inference. IEEE Trans. Multimedia 12(7), 682–691 (2010)

    Article  Google Scholar 

  19. Ma, J., Chen, C., Li, C., Huang, J.: Infrared and visible image fusion via gradient transfer and total variation minimization. Inf. Fusion 31, 100–109 (2016)

    Article  Google Scholar 

  20. Chan, T.F., Esedoglu, S.: Aspects of total variation regularized \(L^1\) function approximation. SIAM J. Appl. Math. 65(5), 1817–1837 (2005)

    Article  MathSciNet  Google Scholar 

  21. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)

    Article  Google Scholar 

  22. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient convolutional neural networks for mobile vision applications, CoRR, vol. abs/1704.04861 (2017)

    Google Scholar 

  23. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition, vol. 2, no. 6, arXiv preprintarXiv:1707.07012 (2017)

    Google Scholar 

  24. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agarwal, S., Sikchi, H.S., Rooj, S., Bhattacharya, S., Routray, A. (2020). Illumination-Invariant Face Recognition by Fusing Thermal and Visual Images via Gradient Transfer. In: Arai, K., Kapoor, S. (eds) Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing, vol 943. Springer, Cham. https://doi.org/10.1007/978-3-030-17795-9_48

Download citation

Publish with us

Policies and ethics