Skip to main content

3D Conceptual Design Using Deep Learning

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 943))

Abstract

This article proposes a data-driven methodology to achieve fast design support to generate or develop novel designs covering multiple object categories. This methodology implements two state-of-the-art Variational Autoencoder, dealing with 3D model data, with a self-defined loss function. The loss function, containing the outputs of individual layers in the autoencoder, obtains combinations of different latent features from different 3D model categories. This article provides detail explanation for utilizing the Princeton Model-Net40 database, a comprehensive clean collection of 3D CAD models for objects. After converting the original 3D mesh file to voxel and point cloud data type, the model will feed an autoencoder with data in the same dimension. The novelty is to leverage the power of deep learning methods as an efficient latent feature extractor to explore unknown designing areas. The output is expected to show a clear and smooth interpretation of the model from different categories to generate new shapes. This article will explore (1) the theoretical ideas, (2) the progress to implement Variational Autoencoder to attain implicit features from input shapes, (3) the results of output shapes during training in selected domains of both 3D voxel data and 3D point cloud data, and (4) the conclusion and future work to achieve the more outstanding goal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Makhzani, A., et al.: Adversarial Autoencoders. American Physical Society, 25 May 2016. http://arxiv.org/abs/1511.05644

  2. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.J.: Representation learning and adversarial generation of 3D point clouds. CoRR, abs/1707.02392 (2017). http://arxiv.org/abs/1707.02392

  3. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C., Ben-gio, Y.: A recurrent latent variable model for sequential data. CoRR, abs/1506.02216 (2015). http://arxiv.org/abs/1506.02216

  4. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. CoRR, abs/1508.06576 (2015). http://arxiv.org/abs/1508.06576

  5. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Fisher, M.: ShapeNet: an information-rich 3D model repository, 09 December 2015. https://arxiv.org/abs/1512.03012

  6. Goodfellow, J., Pouget-Abadie, J., Mirza, M., Xu, B., Bengio, Y.: Generative Adversarial Networks, 10 June 2014. https://arxiv.org/abs/1406.2661

  7. Huang, X., Belongie, S.J.: Arbitrary style transfer in real-time with adaptive instance normalization. CoRR, abs/1703.06868 (2017). http://arxiv.org/abs/1703.06868

  8. Johnson, J., Alahi, A., Li, F.-F.: Perceptual losses for real-time style transfer and super-resolution. In: European Conference on Computer Vision (2016)

    Google Scholar 

  9. Liu, S., Ororbia II, A.G., Giles, C.L.: Learning a hierarchical latent-variable model of voxelized 3D shapes. CoRR, abs/1705.05994 (2017). http://arxiv.org/abs/1705.05994

  10. Rezende, D.J., Eslami, S.M.A., Mohamed, S., Battaglia, P., Jaderberg, M., Heess, N.: Unsupervised learning of 3D structure from images. CoRR, abs/1607.00662 (2016). http://arxiv.org/abs/1607.00662

  11. Wu, Z., Song, S., Khosla, A., Tang, X., Xiao, J.: 3D shapenets for 2.5D object recognition and next-best-view prediction. CoRR, abs/1406.5670 (2014). http://arxiv.org/abs/1406.5670

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Zou .

Editor information

Editors and Affiliations

Appendix

Appendix

See Fig. 11.

Fig. 11.
figure 11

Detail architecture of neural network

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, Z., Jiang, H., Zou, L. (2020). 3D Conceptual Design Using Deep Learning. In: Arai, K., Kapoor, S. (eds) Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing, vol 943. Springer, Cham. https://doi.org/10.1007/978-3-030-17795-9_2

Download citation

Publish with us

Policies and ethics