Skip to main content

Deep Cross-Modal Age Estimation

  • Conference paper
  • First Online:
Advances in Computer Vision (CVC 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 943))

Included in the following conference series:

  • 2633 Accesses

Abstract

Automatic age and gender classification systems can play a vital role in a number of applications including a variety of recommendation systems, face recognition across age progression, and security applications. Current age and gender classifiers, are lacking crucial accuracy and reliability in order to be used in real world applications since most real-time systems have zero fault tolerant. This paper develops an end-to-end, deep architecture aiming to improve the accuracy and reliability of the age estimation task.

We design a deep convolutional neural network (CNN) architecture for age estimation that builds upon a gender classification model. The system leverages a gender classifier to improve the accuracy of the age estimator. We investigate several architectures and techniques for the age estimator model with cross-modal learning, including an end-to-end model, using gender embedding of the input image, which leads to an increased accuracy. We evaluated our system on the Adience benchmark, which consists of real-world in-the-wild pictures of faces. We have shown that our system outperforms state-of-the-art age classifiers, such asĀ [1] by \(9\%\), by training a cross-modal age classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levi, G., Hassner, T.: Age and gender classification using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) workshops, June 2015

    Google ScholarĀ 

  2. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701ā€“1708, June 2014

    Google ScholarĀ 

  3. Howard, D.: Is a manā€™s skin really different? The International Dermal Institute

    Google ScholarĀ 

  4. Eidinger, E., Enbar, R., Hassner, T.: Age and gender estimation of unfiltered faces. IEEE Trans. Inf. Forensics Secur. 9(12), 2170ā€“2179 (2014)

    ArticleĀ  Google ScholarĀ 

  5. MƤkinen, E., Raisamo, R.: Evaluation of gender classification methods with automatically detected and aligned faces. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 541ā€“547 (2008)

    ArticleĀ  Google ScholarĀ 

  6. Reid, D., Samangooei, S., Chen, C., Nixon, M., Ross, A.: Soft biometrics for surveillance: an overview, January 2013

    Google ScholarĀ 

  7. Golomb, B.A., Lawrence, D.T., Sejnowski, T.J.: SEXNET: a neural network identifies sex from human faces. In: Advances in Neural Information Processing Systems 3, NIPS Conference, Denver, Colorado, USA, 26ā€“29 November 1990, pp. 572ā€“579 (1990)

    Google ScholarĀ 

  8. Oā€™Toole, A.J., Vetter, T., Troje, N.F., BĆ¼lthoff, H.H.: Sex classification is better with three-dimensional head structure than with image intensity information. Perception 26(1), 75ā€“84 (1997). PMID: 9196691

    ArticleĀ  Google ScholarĀ 

  9. Moghaddam, B., Yang, M.: Learning gender with support faces. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 707ā€“711 (2002)

    ArticleĀ  Google ScholarĀ 

  10. Baluja, S., Rowley, H.A.: Boosting sex identification performance. Int. J. Comput. Vision 71(1), 111ā€“119 (2007)

    ArticleĀ  Google ScholarĀ 

  11. Toews, M., Arbel, T.: Detection, localization, and sex classification of faces from arbitrary viewpoints and under occlusion. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1567ā€“1581 (2009)

    ArticleĀ  Google ScholarĀ 

  12. Chen, J., Shan, S., He, C., Zhao, G., PietikƤinen, M., Chen, X., Gao, W.: WLD: a robust local image descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1705ā€“1720 (2010)

    ArticleĀ  Google ScholarĀ 

  13. Ullah, I., Aboalsamh, H., Hussain, M., Muhammad, G., Mirza, A., Bebis, G.: Gender recognition from face images with local LBP descriptor. 65, 353ā€“360 (2012)

    Google ScholarĀ 

  14. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The FERET database and evaluation procedure for face-recognition algorithms. Image Vision Comput. 16(5), 295ā€“306 (1998)

    ArticleĀ  Google ScholarĀ 

  15. Perez, C., Tapia, J., Estevez, P., Held, C.: Gender classification from face images using mutual information and feature fusion. Int. J. Optomechatronics 6(1), 92ā€“119 (2012)

    ArticleĀ  Google ScholarĀ 

  16. Shan, C.: Learning local binary patterns for gender classification on real-world face images. Pattern Recogn. Lett. 33, 431ā€“437 (2012)

    ArticleĀ  Google ScholarĀ 

  17. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments, October 2008

    Google ScholarĀ 

  18. Akbulut, Y., ŞengĆ¼r, A., Ekici, S.: Gender recognition from face images with deep learning. In: 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), pp. 1ā€“4, September 2017

    Google ScholarĀ 

  19. Mansanet, J., Albiol, A., Paredes, R.: Local deep neural networks for gender recognition. Pattern Recogn. Lett. 70, 80ā€“86 (2016)

    ArticleĀ  Google ScholarĀ 

  20. Antipov, G., Berrani, S., Dugelay, J.: Minimalistic CNN-based ensemble model for gender prediction from face images. Pattern Recogn. Lett. 70, 59ā€“65 (2016)

    ArticleĀ  Google ScholarĀ 

  21. Zhang, K., Tan, L., Li, Z., Qiao, Y.: Gender and smile classification using deep convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops 2016, Las Vegas, NV, USA, 26 Juneā€“1 July, 2016, pp. 739ā€“743 (2016)

    Google ScholarĀ 

  22. Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 1955ā€“1976 (2010)

    ArticleĀ  Google ScholarĀ 

  23. Han, H., Otto, C., Jain, A.K.: Age estimation from face images: human vs. machine performance. In: International Conference on Biometrics, ICB 2013, Madrid, Spain, 4ā€“7 June 2013, pp. 1ā€“8 (2013)

    Google ScholarĀ 

  24. Salvador, A., Hynes, N., Aytar, Y., MarĆ­n, J., Ofli, F., Weber, I., Torralba, A.: Learning cross-modal embeddings for cooking recipes and food images. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21ā€“26 July 2017, pp. 3068ā€“3076 (2017)

    Google ScholarĀ 

  25. Kwon, Y.H., daĀ VitoriaĀ Lobo, N.: Age classification from facial images. In: Conference on Computer Vision and Pattern Recognition, CVPR 1994, Seattle, WA, USA, 21ā€“23 June 1994, pp. 762ā€“767 (1994)

    Google ScholarĀ 

  26. Ramanathan, N., Chellappa, R.: Modeling age progression in young faces. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), New York, NY, USA, 17ā€“22 June 2006, pp. 387ā€“394 (2006)

    Google ScholarĀ 

  27. Geng, X., Zhou, Z.H., Smith-Miles, K.: Automatic age estimation based on facial aging patterns. IEEE Trans. Pattern Anal. Mach. Intell. 29(12), 2234ā€“2240 (2007)

    ArticleĀ  Google ScholarĀ 

  28. Guo, G., Fu, Y., Dyer, C.R., Huang, T.S.: Image-based human age estimation by manifold learning and locally adjusted robust regression. IEEE Trans. Image Processing 17(7), 1178ā€“1188 (2008)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  29. Fu, Y., Huang, T.S.: Human age estimation with regression on discriminative aging manifold. IEEE Trans. Multimedia 10(4), 578ā€“584 (2008)

    ArticleĀ  Google ScholarĀ 

  30. INRIA: The FG-Net ageing database (2002). www.prima.inrialpes.fr/fgnet/html/benchmarks.html

  31. Ricanek Jr., K., Tesafaye, T.: MORPH: a longitudinal image database of normal adult age-progression. In: Seventh IEEE International Conference on Automatic Face and Gesture Recognition (FG 2006), Southampton, UK, 10ā€“12 April 2006, pp. 341ā€“345 (2006)

    Google ScholarĀ 

  32. Yan, S., Zhou, X., Liu, M., Hasegawa-Johnson, M., Huang, T.S.: Regression from patch-kernel. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), Anchorage, Alaska, USA, 24ā€“26 June 2008 (2008)

    Google ScholarĀ 

  33. Fukunaga, K.: Introduction to Statistical Pattern Recognition, pp. 1ā€“592 (1991)

    MATHĀ  Google ScholarĀ 

  34. Yan, S., Liu, M., Huang, T.S.: Extracting age information from local spatially flexible patches. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2008, 30 Marchā€“4 April 2008, Caesars Palace, Las Vegas, Nevada, USA, pp. 737ā€“740 (2008)

    Google ScholarĀ 

  35. Ghahramani, Z.: An introduction to hidden Markov models and Bayesian networks. IJPRAI 15(1), 9ā€“42 (2001)

    Google ScholarĀ 

  36. Zhuang, X., Zhou, X., Hasegawa-Johnson, M., Huang, T.: Face age estimation using patch-based hidden Markov model supervectors. In: 2008 19th International Conference on Pattern Recognition, pp. 1ā€“4, December 2008

    Google ScholarĀ 

  37. Gao, F., Ai, H.: Face age classification on consumer images with Gabor feature and fuzzy LDA method. In: Proceedings of the Advances in Biometrics, Third International Conference, ICB 2009, Alghero, Italy, 2ā€“5 June 2009, pp. 132ā€“141 (2009)

    ChapterĀ  Google ScholarĀ 

  38. Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans. Image Process. 11(4), 467ā€“476 (2002)

    ArticleĀ  Google ScholarĀ 

  39. Guo, G., Mu, G., Fu, Y., Dyer, C.R., Huang, T.S.: A study on automatic age estimation using a large database. In: IEEE 12th International Conference on Computer Vision, ICCV 2009, Kyoto, Japan, 27 Septemberā€“4 October 2009, pp. 1986ā€“1991 (2009)

    Google ScholarĀ 

  40. Riesenhuber, M., Poggio, T.: Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019ā€“1025 (1999)

    ArticleĀ  Google ScholarĀ 

  41. Ahonen, T., Hadid, A., PietikƤinen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037ā€“2041 (2006)

    ArticleĀ  Google ScholarĀ 

  42. Choi, S.E., Lee, Y.J., Lee, S.J., Park, K.R., Kim, J.: Age estimation using a hierarchical classifier based on global and local facial features. Pattern Recogn. 44(6), 1262ā€“1281 (2011)

    ArticleĀ  Google ScholarĀ 

  43. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273ā€“297 (1995)

    MATHĀ  Google ScholarĀ 

  44. Chao, W., Liu, J., Ding, J.: Facial age estimation based on label-sensitive learning and age-oriented regression. Pattern Recogn. 46(3), 628ā€“641 (2013)

    ArticleĀ  Google ScholarĀ 

  45. Mirzazadeh, R., Moattar, M.H., Jahan, M.V.: Metamorphic malware detection using linear discriminant analysis and graph similarity. In: 2015 5th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 61ā€“66, October 2015

    Google ScholarĀ 

  46. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning distance functions using equivalence relations. In: Machine Learning, Proceedings of the Twentieth International Conference (ICML 2003), 21ā€“24 August 2003, Washington, DC, USA, pp. 11ā€“18 (2003)

    Google ScholarĀ 

  47. He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems 16, Neural Information Processing Systems, NIPS 2003, Vancouver and Whistler, British Columbia, Canada, 8ā€“13 December 2003, pp. 153ā€“160 (2003)

    Google ScholarĀ 

  48. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Computer Vision - ECCV 1998, 5th European Conference on Computer Vision, Freiburg, Germany, 2ā€“6 June 1998, Proceedings, vol. II, pp. 484ā€“498 (1998)

    Google ScholarĀ 

  49. Gallagher, A.C., Chen, T.: Understanding images of groups of people. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, Florida, USA, 20ā€“25 June 2009, pp. 256ā€“263 (2009)

    Google ScholarĀ 

  50. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: the first manually collected, in-the-wild age database. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops, Honolulu, HI, USA, 21ā€“26 July 2017, pp. 1997ā€“2005 (2017)

    Google ScholarĀ 

  51. Rothe, R., Timofte, R., Gool, L.V.: Deep expectation of real and apparent age from a single image without facial landmarks. Int. J. Comput. Vision 126(2ā€“4), 144ā€“157 (2018)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  52. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Li, F.: ImageNet large scale visual recognition challenge. CoRR abs/1409.0575 (2014)

    Google ScholarĀ 

  53. Pei, W., Dibeklioglu, H., Baltrusaitis, T., Tax, D.M.J.: Attended end-to-end architecture for age estimation from facial expression videos. CoRR abs/1711.08690 (2017)

    Google ScholarĀ 

  54. Chen, J., Kumar, A., Ranjan, R., Patel, V.M., Alavi, A., Chellappa, R.: A cascaded convolutional neural network for age estimation of unconstrained faces. In: 8th IEEE International Conference on Biometrics Theory, Applications and Systems, BTAS 2016, Niagara Falls, NY, USA, 6ā€“9 September 2016, pp. 1ā€“8 (2016)

    Google ScholarĀ 

  55. Xing, J., Li, K., Hu, W., Yuan, C., Ling, H.: Diagnosing deep learning models for high accuracy age estimation from a single image. Pattern Recogn. 66, 106ā€“116 (2017)

    ArticleĀ  Google ScholarĀ 

  56. Liu, H., Lu, J., Feng, J., Zhou, J.: Group-aware deep feature learning for facial age estimation. Pattern Recogn. 66, 82ā€“94 (2017)

    ArticleĀ  Google ScholarĀ 

  57. Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G.: Recent advances in convolutional neural networks. CoRR abs/1512.07108 (2015)

    Google ScholarĀ 

  58. LeCun, Y., Boser, B.E., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W.E., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541ā€“551 (1989)

    ArticleĀ  Google ScholarĀ 

  59. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a Meeting Held 3ā€“6 December 2012, Lake Tahoe, Nevada, United States, pp. 1106ā€“1114 (2012)

    Google ScholarĀ 

  60. Toshev, A., Szegedy, C.: DeepPose: human pose estimation via deep neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, 23ā€“28 June 2014, pp. 1653ā€“1660 (2014)

    Google ScholarĀ 

  61. Luo, P., Wang, X., Tang, X.: Hierarchical face parsing via deep learning. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16ā€“21 June 2012, pp. 2480ā€“2487 (2012)

    Google ScholarĀ 

  62. Sun, Y., Wang, X., Tang, X.: Deep convolutional network cascade for facial point detection. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23ā€“28 June 2013, pp. 3476ā€“3483 (2013)

    Google ScholarĀ 

  63. Wu, Y., Hassner, T.: Facial landmark detection with tweaked convolutional neural networks. CoRR abs/1511.04031 (2015)

    Google ScholarĀ 

  64. Lv, J., Shao, X., Xing, J., Cheng, C., Zhou, X.: A deep regression architecture with two-stage re-initialization for high performance facial landmark detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21ā€“26 July 2017, pp. 3691ā€“3700 (2017)

    Google ScholarĀ 

  65. Ranjan, R., Sankaranarayanan, S., Castillo, C.D., Chellappa, R.: An all-in-one convolutional neural network for face analysis. CoRR abs/1611.00851 (2016)

    Google ScholarĀ 

  66. Dehghan, A., Ortiz, E.G., Shu, G., Masood, S.Z.: DAGER: deep age, gender and emotion recognition using convolutional neural network. CoRR abs/1702.04280 (2017)

    Google ScholarĀ 

  67. Graves, A., Mohamed, A., Hinton, G.E.: Speech recognition with deep recurrent neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, 26ā€“31 May 2013, pp. 6645ā€“6649 (2013)

    Google ScholarĀ 

  68. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Li, F.: Large-scale video classification with convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, Columbus, OH, USA, 23ā€“28 June 2014, pp. 1725ā€“1732 (2014)

    Google ScholarĀ 

  69. Xu, D., Ouyang, W., Ricci, E., Wang, X., Sebe, N.: Learning cross-modal deep representations for robust pedestrian detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21ā€“26 July 2017, pp. 4236ā€“4244 (2017)

    Google ScholarĀ 

  70. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.E., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. CoRR abs/1409.4842 (2014)

    Google ScholarĀ 

  71. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.J., Harp, A., Irving, G., Isard, M., Jia, Y., JĆ³zefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., ManĆ©, D., Monga, R., Moore, S., Murray, D.G., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.A., Vanhoucke, V., Vasudevan, V., ViĆ©gas, F.B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. CoRR abs/1603.04467 (2016)

    Google ScholarĀ 

  72. Hassner, T., Harel, S., Paz, E., Enbar, R.: Effective face frontalization in unconstrained images. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7ā€“12 June 2015, pp. 4295ā€“4304 (2015)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Aminian or Guevara Noubir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aminian, A., Noubir, G. (2020). Deep Cross-Modal Age Estimation. In: Arai, K., Kapoor, S. (eds) Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing, vol 943. Springer, Cham. https://doi.org/10.1007/978-3-030-17795-9_12

Download citation

Publish with us

Policies and ethics