Skip to main content

Simple Models for Moist Gravity Waves

  • Chapter
  • First Online:

Part of the book series: Mathematics of Planet Earth ((MPE,volume 3))

Abstract

This chapter introduces the reader to basic simple ideas for convectively coupled wave models mostly in order to put the multicloud model, which will be discussed in Chapter 6, in the context of preceding theories. It explores some of the ideas that have been proposed in the literature and their main characteristics and pitfalls using simplistic models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. A. Anthes, E.-Y. Hsie, and Y.-H. Kuo. Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4). NCAR Tech. Note NCAR/TN-282+STR, National Center for Atmospheric Research, 1987.

    Google Scholar 

  2. A. Arakawa. The cumulus parameterization problem: Past, present, and future. J. Climate, 17(13):2493–2525, 2004.

    Article  Google Scholar 

  3. A. Arakawa and W. H. Schubert. Interaction of a cumulus cloud ensemble with large-scale environment, part I. J. Atmos. Sci., 31(3):674–701, 1974.

    Article  Google Scholar 

  4. A. K. Betts and M. J. Miller. A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Quarterly Journal of the Royal Meteorological Society, 112(473):693–709, 1986.

    Google Scholar 

  5. Alan K. Betts. A new convective adjustment scheme. Part I: Observational and theoretical basis. Q. J. Roy. Met. Soc., 112:677–692, 1986.

    Google Scholar 

  6. W.C. Chao. A critique of wave-CISK as an explanation for the 40–50 day: tropical intraseasonal oscillation. J. Meteor. Soc. Japan, 73(3):677–684, 1995.

    Article  MathSciNet  Google Scholar 

  7. J. G. Charney and A. Eliassen. On the growth of the hurricane depression. J. Atmos. Sci., 21:68–75, 1964.

    Article  Google Scholar 

  8. S. S. Chen, R. A. Houze, Jr., and B. E. Mapes. Multiscale variability of deep convection in relation to large-scale circulation in TOGA COARE. J. Atmos. Sci., 53:1380–1409, 1996.

    Article  Google Scholar 

  9. G. C. Craig and S. L. Gray. CISK or WISHE as the mechanism for tropical cyclone intensification. J. Atmos. Sci., 53:3528–3540, 1996.

    Article  Google Scholar 

  10. H. C. Davies. Phase-lagged wave-CISK. Quart. J. Roy. Meteor. Soc., 105:325–353, 1979.

    Article  Google Scholar 

  11. K. A. Emanuel. An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44:2324–3240, 1987.

    Article  Google Scholar 

  12. K. A Emanuel, J. D. Neelin, and C. S. Bretherton. On large-scale circulations in convecting atmosphere. Quart. J. Roy. Meteor. Soc., 120:1111–1143, 1994.

    Google Scholar 

  13. D. Frierson, A. Majda, and O. Pauluis. Dynamics of precipitation fronts in the tropical atmosphere. Comm. Math. Sciences, 2:591–626, 2004.

    Article  Google Scholar 

  14. D. M. W. Frierson. Convectively coupled kelvin waves in an idealized moist general circulation model. J. Atmos. Sci., 64:2076–2090, 2007.

    Article  Google Scholar 

  15. D. M. W. Frierson, A. J. Majda, and O. M. Pauluis. Large scale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit. Commun. Math. Sci., 2(4):591–626, 2004.

    Article  MathSciNet  Google Scholar 

  16. Z. Fuchs and D. Raymond. Large-scale modes of a nonrotating atmosphere with water vapor and cloud-radiation feedbacks. J. Atmos. Sci., 59:1669–1679, 2002.

    Article  Google Scholar 

  17. A.E. Gill. Some simple solutions for heat-induced tropical circulation. Q. J. Royal Meteor. Soc., 106(449):447–462, 1980.

    Article  Google Scholar 

  18. Jr. Houze, Robert A. Cloud clusters and large-scale vertical motions in the Tropics. J. Meteor. Soc. Japan, 60(1):396–410, 1982.

    Google Scholar 

  19. R. A. Houze. Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78:2179–2196, 1997.

    Article  Google Scholar 

  20. R. A. Houze, Jr. Observed structure of mesoscale convective systems and implications for large-scale heating. Q. J. Roy. Met. Soc., 115(487):425–461, 1989.

    Article  Google Scholar 

  21. R. A. Houze, Jr. Mesoscale convective systems. Rev. Geophys., 42:G4003+, December 2004.

    Google Scholar 

  22. R. A. Houze, Jr., S. S. Chen, D. E. Kingsmill, Y. Serra, and S. E. Yuter. Convection over the Pacific warm pool in relation to the atmospheric Kelvin–Rossby wave. J. Atmos. Sci., 57:3058–3089, September 2000.

    Article  Google Scholar 

  23. B. Khouider and A. J. Majda. A non-oscillatory well balanced scheme for an idealized tropical climate model. Part II: Nonlinear coupling and moisture effects. Theor. Comp. Fluid Dyn., 19:355–375, 2005.

    MATH  Google Scholar 

  24. B. Khouider and A. J. Majda. Equatorial convectively coupled waves in a simple multicloud model. J. Atmos. Sci., 65:3376–3397, 2008.

    Article  Google Scholar 

  25. H.-L. Kuo. On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J. Amos. Sci., 22:40–63, 1965.

    Google Scholar 

  26. H.-L. Kuo. Further studies of the parameterization of the influence of cumulus convection on large-scale flow. Journal of the Atmospheric Sciences, 31(5):1232–1240, 1974.

    Article  Google Scholar 

  27. Ngar-Cheung Lau, Isaac M. Held, and J. David Neelin. The madden-julian oscillation in an idealized general circulation model. Journal of the Atmospheric Sciences, 45(24):3810–3832, 1988.

    Article  Google Scholar 

  28. J.-L. Lin, G. N. Kiladis, B. E. Mapes, K. M. Weickmann, K. R Sperber, W. Lin, M. Wheeler, S. D. Schubert, A. Del Genio, L. J. Donner, S. Emori, J.-F. Gueremy, F. Hourdin, P. J. Rasch, E. Roeckner, and J. F. Scinocca. Tropical intraseasonal variability in 14 IPCC AR4 climate models Part I: Convective signals. J. Climate, 19:2665–2690, 2006.

    Article  Google Scholar 

  29. J.L. Lin, M.I. Lee, D. Kim, I.S. Kang, and D.M.W. Frierson. The impacts of convective parameterization and moisture triggering on AGCM-simulated convectively coupled equatorial waves. Journal of Climate, 21(5):883–909, 2008.

    Article  Google Scholar 

  30. X. Lin and R. H. Johnson. Kinematic and thermodynamic characteristics of the flow over the “western pacific warm pool during TOGA COARE”. J. Atmos. Sci., 53:695–715, 1996.

    Article  Google Scholar 

  31. R. S. Lindzen. Wave-CISK in the tropics. J. Atmos. Sci., 31:156–179, 1974.

    Article  Google Scholar 

  32. A. J. Majda, B. Khouider, G.N. Kiladis, K. H. Straub, and M. G. Shefter. A model for convectively coupled tropical waves: Nonlinearity, rotation, and comparison with observations. J. Atmos. Sci., 61:2188–2205, 2004.

    Article  MathSciNet  Google Scholar 

  33. A. J. Majda and M. Shefter. Models for stratiform instability and convectively coupled waves. J. Atmos. Sci., 58:1567–1584, 2001.

    Article  MathSciNet  Google Scholar 

  34. A. J. Majda and M. Shefter. Waves and instabilities for model tropical convective parametrizations. J. Atmos. Sci., 58:896–914, 2001.

    Article  Google Scholar 

  35. S. Manabe, J. Smagorinsky, and R. F. Strickler. Simulated climatology of a general circulation model with a hydrologic cycle. Monthly Weather Review, 93(12):769–798, 1965.

    Article  Google Scholar 

  36. B. Mapes, S. Tulich, J. Lin, and P. Zuidema. The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dynamics of Atmospheres and Oceans, 42(1–4):3–29, 2006.

    Article  Google Scholar 

  37. B. E. Mapes. Gregarious tropical convection. J. Atmos. Sci, 50:2026–2037, 1993.

    Article  Google Scholar 

  38. B. E. Mapes. Convective inhibition, subgridscale triggering energy, and “stratiform instability” in a toy tropical wave model. J. Atmos. Sci., 57:1515–1535, 2000.

    Article  Google Scholar 

  39. B. E. Mapes and R. A. Houze Jr. Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121(5):1398–1416, 1993.

    Article  Google Scholar 

  40. Brian E. Mapes and Robert A. Houze Jr. Diabatic divergence profiles in western Pacific mesoscale convective systems. J. Atmos. Sci., 52:1807–1828, 1995.

    Google Scholar 

  41. T. Matsuno. Quasi-geostrophic motions in the equatorial area. J. Met. Jap., 44:25–41, 1966.

    Google Scholar 

  42. J. D. Neelin, I. M. Held, and K. H. Cook. Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44(16):2341–2348, 1987.

    Article  Google Scholar 

  43. J. D. Neelin and J. Yu. Modes of tropical variability under convective adjustment and Madden-Julian oscillation. Part I: Analytical theory. J. Atmos. Sci., 51:1876–1894, 1994.

    Google Scholar 

  44. S. Osher and C.-W. Shu. High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations. Siam J. Numer. Anal., 28:907–922, 1991.

    Article  MathSciNet  Google Scholar 

  45. O. Pauluis, D. Frierson, and A. Majda. Precipitation fronts and the reflection and transmission of tropical disturbances. Q. J. R. Meteorol. Soc., 134:913–930, 2008.

    Article  Google Scholar 

  46. D. J. Raymond. A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58:2807–2819, September 2001.

    Article  Google Scholar 

  47. A. Sobel and E. Maloney. An idealized semi-empirical framework for modeling the madden-julian oscillation. Journal of Atmospheric Sciences, 69:1691–1705, may 2012.

    Article  Google Scholar 

  48. Samuel N. Stechmann and Andrew J. Majda. The structure of precipitation fronts for finite relaxation time. Theor. Comput. Fluid Dyn., 20:377–404, 2006.

    Google Scholar 

  49. K. H. Straub and G. N. Kiladis. The observed structure of convectively coupled Kelvin waves: comparison with simple models of coupled wave instability. J. Atmos. Sci., 60(14):1655–1668, 2003.

    Article  MathSciNet  Google Scholar 

  50. B. Wang and H. Rui. Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial beta-plane. J. Atmos. Sci., 47:397–413, February 1990.

    Article  Google Scholar 

  51. B. Wang and H. Rui. Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteorology and Atmospheric Physics, 44(1):43–61, 1990.

    Article  Google Scholar 

  52. Bin Wang. Dynamics of tropical low-frequency waves: An analysis of the moist kelvin wave. Journal of the Atmospheric Sciences, 45(14):2051–2065, 1988.

    Article  Google Scholar 

  53. M. Wheeler and G. N. Kiladis. Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56(3):374–399, 1999.

    Article  Google Scholar 

  54. X. Xie and B. Wang. Low-frequency equatorial waves in vertically sheared zonal flow. Part II: Unstable waves. J. Atmos. Sci., 53:3589–3605, 1996.

    MathSciNet  Google Scholar 

  55. J.-I. Yano, J. C. McWilliams, M.W. Moncrieff, and K. A. Emanuel. Hierarchical tropical cloud systems in an analog shallow-water model. J. Atmos. Sci., 52:1723–1742, 1995.

    Article  Google Scholar 

  56. G. J. Zhang and N. A. McFarlane. Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Center general circulation model. Atmos. Ocean, 33(3):407–446, Sep 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khouider, B. (2019). Simple Models for Moist Gravity Waves. In: Models for Tropical Climate Dynamics. Mathematics of Planet Earth, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-17775-1_5

Download citation

Publish with us

Policies and ethics