Skip to main content

Observations of Tropical Climate Dynamics and Convectively Coupled Waves

  • Chapter
  • First Online:
Models for Tropical Climate Dynamics

Part of the book series: Mathematics of Planet Earth ((MPE,volume 3))

  • 794 Accesses

Abstract

The first evidence of equatorially trapped waves in observational records appeared in 1966 in the work of Yanai and Maruyama [294], at the same time as the theoretical work of Matsuno [187]. Yanai and Maruyama [294] found signals of wave-like motion with strong cross equatorial wind in US Navy stratospheric wind data (which were apparently used to monitor nuclear activity during the cold war) when they were looking for evidence of eddy momentum transport as a plausible energy source for the quasi-biannual oscillation (QBO) in the equatorial stratosphere [188]. These waves correspond to the mixed Rossby-gravity waves from the Matsuno theory, which are also sometimes called Yanai-Maruyama or simply Yanai waves. Two years later Wallace and Kousky [271] (see also [83]) published their work on the discovery of Kelvin waves in the tropical stratosphere, which unlike those identified earlier by Yanai and Maruyama they are characterized by dominating zonal winds in phase with pressure perturbations. They were also motivated by the search for an energy source for the QBO in the form of wave eddy momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Global Atmosphere Research Program-GARP Atlantic Tropical Experiment.

  2. 2.

    The Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment.

  3. 3.

    Further knowledge, especially regarding the dynamics of the MJO, has been gained during the most recent Dynamo-Cindy field campaign and more will be gained with the upcoming Years of the Maritime Continent experiment.

References

  1. Ángel F. Adames and Daehyun Kim. The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. Journal of the Atmospheric Sciences, 73(3):913–941, 2016.

    Article  Google Scholar 

  2. J. Biello and A. Majda. A multi-scale model for the Madden–Julian oscillation. J. Atmos. Sci., 62:1694–1721, 2005.

    Article  Google Scholar 

  3. T. J. Dunkerton, M. T. Montgomery, and Z. Wang. Tropical cyclogenesis in a tropical wave critical layer: easterly waves. Atmospheric Chemistry & Physics Discussions, 8:11149–11292, June 2008.

    Article  Google Scholar 

  4. Wojciech W. Grabowski and Mitchell W. Moncrieff. Large-scale organization of tropical convection in two- dimensional explicit numerical simulations. Q. J. R. Meteorol. Soc., 127:445–468, 2001.

    Google Scholar 

  5. JAMES R. HOLTON and RICHARD S. LINDZEN. A note on kelvin waves in the atmosphere. Monthly Weather Review, 96(6):385–386, 1968.

    Google Scholar 

  6. Jr. Houze, R. A. Structure and dynamics of a tropical squall–line system. Mon. Wea. Rev., 105(12):1540–1567, 1977.

    Article  Google Scholar 

  7. Jr. Houze, Robert A. Cloud clusters and large-scale vertical motions in the Tropics. J. Meteor. Soc. Japan, 60(1):396–410, 1982.

    Google Scholar 

  8. R. A. Houze. Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78:2179–2196, 1997.

    Article  Google Scholar 

  9. R. A. Houze, Jr. Observed structure of mesoscale convective systems and implications for large-scale heating. Q. J. Roy. Met. Soc., 115(487):425–461, 1989.

    Article  Google Scholar 

  10. R. A. Houze, Jr. Mesoscale convective systems. Rev. Geophys., 42:G4003+, December 2004.

    Google Scholar 

  11. R. A. Houze, Jr. and A. K. Betts. Convection in GATE. Reviews of Geophysics and Space Physics, 19:541–576, November 1981.

    Article  Google Scholar 

  12. R.A. Houze. Cloud dynamics. Academic Press, San Diego, 1993.

    Google Scholar 

  13. R. H. Johnson, T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert. Trimodal characteristics of tropical convection. Journal of Climate, 12(8):2397–2418, 1999.

    Article  Google Scholar 

  14. B. Khouider and A. J. Majda. A simple multicloud parameterization for convectively coupled tropical waves. part i: Linear analysis. J. Atmos. Sci., 63:1308–1323, 2006.

    Article  MathSciNet  Google Scholar 

  15. B. Khouider and A. J. Majda. A simple multicloud parameterization for convectively coupled tropical waves. Part II: Nonlinear simulations. J. Atmos. Sci., 64:381–400, 2007.

    Google Scholar 

  16. B. Khouider and A. J. Majda. Equatorial convectively coupled waves in a simple multicloud model. J. Atmos. Sci., 65:3376–3397, 2008.

    Article  Google Scholar 

  17. B. Khouider and A. J. Majda. Multicloud model for organized tropical convection: Enhanced congestus heating. J. Atmos. Sci., 65:895–914, 2008.

    Article  Google Scholar 

  18. B. Khouider, A. J. Majda, and S. N. Stechmann. Climate science in the tropics: waves, vortices and PDEs. Nonlinearity, 26(1):R1, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. N. Kiladis, K. H. Straub, and P. T. Haertel. Zonal and vertical structure of the madden-julian oscillation. J. Atmos. Sci., 62:2790–2809, August 2005.

    Article  Google Scholar 

  20. G. N. Kiladis, M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy. Convectively coupled equatorial waves. Rev. Geophys., 47:RG2003, doi:10.1029/2008RG000266, 2009.

    Google Scholar 

  21. M. A. LeMone, E. J. Zipser, and S. B. Trier. The role of environmental shear and thermodynamic conditions in determining the structure and evolution of mesoscale convective systems during TOGA COARE. J. Atmos. Sci., 55:3493–3518, 1998.

    Article  Google Scholar 

  22. J.-L. Lin, B. Mapes, M. Zhang, and M. Newman. Stratiform precipitation, vertical heating profiles, and the Madden-Julian oscillation. J. Atmos. Sci., 61:296–309, 2004.

    Article  Google Scholar 

  23. X. Lin and R. H. Johnson. Heating, Moistening, and Rainfall over the Western Pacific Warm Pool during TOGA COARE. J. Atmos. Sci., 53:3367–33834, 1996.

    Article  Google Scholar 

  24. X. Lin and R. H. Johnson. Kinematic and thermodynamic characteristics of the flow over the “western pacific warm pool during TOGA COARE”. J. Atmos. Sci., 53:695–715, 1996.

    Article  Google Scholar 

  25. R. Madden and P. R. Julian. Description of global-scale circulation cells in the tropics with a 40 − 50-day period. J. Atmos. Sci., 29:1109–1123, 1972.

    Article  Google Scholar 

  26. R. A. Madden and P. R. Julian. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28:702–708, 1971.

    Article  Google Scholar 

  27. A. J. Majda. Multiscale models with moisture and systematic strategies for superparameterization. J. Atmos. Sci., 64:2726–2734, 2007.

    Article  Google Scholar 

  28. A. J. Majda. New multi-scale models and self-similarity in tropical convection. J. Atmos. Sci., 64:1393–1404, 2007.

    Article  Google Scholar 

  29. A. J. Majda, B. Khouider, G.N. Kiladis, K. H. Straub, and M. G. Shefter. A model for convectively coupled tropical waves: Nonlinearity, rotation, and comparison with observations. J. Atmos. Sci., 61:2188–2205, 2004.

    Article  MathSciNet  Google Scholar 

  30. A. J. Majda and M. Shefter. Models for stratiform instability and convectively coupled waves. J. Atmos. Sci., 58:1567–1584, 2001.

    Article  MathSciNet  Google Scholar 

  31. A. J. Majda and S. N. Stechmann. The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106:8417–8422, 2009.

    Article  Google Scholar 

  32. B. Mapes, S. Tulich, J. Lin, and P. Zuidema. The mesoscale convection life cycle: Building block or prototype for large-scale tropical waves? Dynamics of Atmospheres and Oceans, 42(1–4):3–29, 2006.

    Article  Google Scholar 

  33. B. E. Mapes. Gregarious tropical convection. J. Atmos. Sci, 50:2026–2037, 1993.

    Article  Google Scholar 

  34. B. E. Mapes. Convective inhibition, subgridscale triggering energy, and “stratiform instability” in a toy tropical wave model. J. Atmos. Sci., 57:1515–1535, 2000.

    Article  Google Scholar 

  35. B. E. Mapes and R. A. Houze Jr. Cloud clusters and superclusters over the oceanic warm pool. Mon. Wea. Rev., 121(5):1398–1416, 1993.

    Article  Google Scholar 

  36. T. Matsuno. Quasi-geostrophic motions in the equatorial area. J. Met. Jap., 44:25–41, 1966.

    Google Scholar 

  37. Taroh Matsuno. Prologue: Tropical meteorology 1960–2010 personal recollections. Meteorological Monographs, 56:vii–xv, 2016.

    Article  Google Scholar 

  38. Mitchell W. Moncrieff. Organized convective systems: Archetypal dynamical models, mass and momentum flux theory, and parameterization. Q. J. Roy. Met. Soc., 118(507):819–850, 1992.

    Google Scholar 

  39. T. Murakami, L. X. Chen, and A. Xie. Relationship among seasonal cycles, low frequency oscillations and transient disturbances as revealed from outgoing long wave radiation. Mon. Wea. Rev., 114:1456–1465, 1986.

    Article  Google Scholar 

  40. T. Murakami and T. Nakazawa. Tropical 45 day oscillations during 1979 northern hemisphere summer. J. Atmos. Sci., 42:1107–1122, 1985.

    Article  Google Scholar 

  41. T. Murakami, T. Nakazawa, and J. He. On the 40–50 day oscillation during 1979 northern hemisphere summer. Part I: Phase propagation. J. Meteor. Soc. Japan, 62:440–468, 1984.

    Google Scholar 

  42. T. Nakazawa. Tropical super clusters within intraseasonal variations over the western Pacific. J. Met. Soc. Japan, 66(6):823–839, 1988.

    Article  Google Scholar 

  43. M. E. Peters and C. S. Bretherton. Structure of tropical variability from a vertical mode perspective. Theor. Comp. Fluid Dyn., 20:501–524, 2006.

    Article  Google Scholar 

  44. Paul E. Roundy. The spectrum of convectively coupled kelvin waves and the Madden–Julian oscillation in regions of low-level easterly and westerly background flow. Journal of the Atmospheric Sciences, 69(7):2107–2111, 2012.

    Google Scholar 

  45. A. Sobel and E. Maloney. An idealized semi-empirical framework for modeling the madden-julian oscillation. Journal of Atmospheric Sciences, 69:1691–1705, may 2012.

    Article  Google Scholar 

  46. K. H. Straub and G. N. Kiladis. The observed structure of convectively coupled kelvin waves: Comparison with simple models of coupled wave instability. Journal of Atmospheric Sciences, 60:1655–1668, July 2003.

    Article  MathSciNet  Google Scholar 

  47. K.H. Straub and G.N. Kiladis. Observations of a convectively-coupled kelvin wave in the eastern pacific ITCZ. J. Atmos. Sci., 59:30–53, 2002.

    Article  Google Scholar 

  48. Y. N. Takayabu. Large-scale cloud disturbances associated with equatorial waves. II: Westward-propagating inertio-gravity waves. J. Meteor. Soc. Japan, 72(3):451–465, 1994.

    Google Scholar 

  49. Y. N. Takayabu. Large-scale cloud disturbances associated with equatorial waves. Part I: Spectral features of the cloud disturbances. J. Meteor. Soc. Japan, 72:433–448, 1994.

    Google Scholar 

  50. S. N. Tulich, D. Randall, and B. Mapes. Vertical-mode and cloud decomposition of large-scale convectively coupled gravity waves in a two-dimensional cloud-resolving model. J. Atmos. Sci., 64:1210–1229, 2007.

    Article  Google Scholar 

  51. S.N. Tulich and B.E. Mapes. Multi-scale convective wave disturbances in the Tropics: Insights from a two-dimensional cloud-resolving model. J. Atmos. Sci., 65(1):140–155, 2008.

    Article  Google Scholar 

  52. G.K. Vallis. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press, New York, 2006.

    Book  MATH  Google Scholar 

  53. J. M. Wallace. Spectral studies of tropospheric wave disturbances in the tropical western pacific. Rev. Geophys., pages 557–612, 1971.

    Article  Google Scholar 

  54. John M. Wallace and V. E. Kousky. Observational evidence of kelvin waves in the tropical stratosphere. Journal of the Atmospheric Sciences, 25(5):900–907, 1968.

    MathSciNet  Google Scholar 

  55. B. Wang and H. Rui. Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial beta-plane. J. Atmos. Sci., 47:397–413, February 1990.

    Article  Google Scholar 

  56. Peter J. Webster and Roger Lukas. TOGA COARE: The Coupled Ocean-Atmosphere Response Experiment. Bulletin of the American Meteorological Society, 73(9):1377–1416, 1992.

    Google Scholar 

  57. M. Wheeler and G. N. Kiladis. Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56(3):374–399, 1999.

    Article  Google Scholar 

  58. M. Wheeler, G. N. Kiladis, and P. J. Webster. Large scale dynamical fields associated with convectively coupled equatorial waves. J. Atmos. Sci., 57:613–640, 2000.

    Article  Google Scholar 

  59. Michio Yanai and T. Maruyama. Stratospheric wave disturbances propagating over the equatorial pacific. J. Met. Soc. Japan, 44(5):291–294, 1966.

    Article  Google Scholar 

  60. C. Zhang. Madden–Julian Oscillation. Reviews of Geophysics, 43:G2003+, June 2005.

    Google Scholar 

  61. Chidong Zhang. “madden-julian oscillation”: Bridging weather and climate. Bulletin of the American Meteorological Society, 94(12):1849–1870, 2013.

    Article  Google Scholar 

  62. M. Zhao and P. H. Austin. Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport. J. Atmos. Sci., 62(5):1269–1290, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khouider, B. (2019). Observations of Tropical Climate Dynamics and Convectively Coupled Waves. In: Models for Tropical Climate Dynamics. Mathematics of Planet Earth, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-17775-1_3

Download citation

Publish with us

Policies and ethics