Skip to main content

SMCM in CFS: Improving the Tropical Modes of Variability

  • Chapter
  • First Online:
Models for Tropical Climate Dynamics

Part of the book series: Mathematics of Planet Earth ((MPE,volume 3))

  • 777 Accesses

Abstract

The failure of the traditional cumulus parameterizations to adequately represent organized convective systems and tropical climate variability such as the Madden-Julian oscillation, convectively coupled waves, and monsoon weather and climate [e.g. 151, 95, 97] led the climate modelling community to think outside the box [224].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the bright blurb on the right boundary of the observation panels is a data processing artefact that should be ignored.

References

  1. S Abhik, M Halder, P Mukhopadhyay, X Jiang, and BN Goswami. A possible new mechanism for northward propagation of boreal summer intraseasonal oscillations based on TRMM and MERRA reanalysis. Clim. Dyn., 40(7–8):1611–1624, 2013.

    Google Scholar 

  2. Ángel F. Adames and Daehyun Kim. The MJO as a dispersive, convectively coupled moisture wave: Theory and observations. Journal of the Atmospheric Sciences, 73(3):913–941, 2016.

    Google Scholar 

  3. R. S. Ajayamohan, Boualem Khouider, and Andrew J. Majda. Simulation of monsoon intraseasonal oscillations in a coarse-resolution aquaplanet GCM. Geophysical Research Letters, 41(15):5662–5669, 2014.

    Google Scholar 

  4. R. S. Ajayamohan, Boualem Khouider, Andrew J. Majda, and Qiang Deng. Role of stratiform heating on the organization of convection over the monsoon trough. Climate Dynamics, 47(12):3641–3660, 2016.

    Article  Google Scholar 

  5. A. Arakawa and W. H. Schubert. Interaction of a cumulus cloud ensemble with large-scale environment, part I. J. Atmos. Sci., 31(3):674–701, 1974.

    Article  Google Scholar 

  6. Judith Berner, Ulrich Achatz, Lauriane Batté, Lisa Bengtsson, Alvaro De La CáMara, Hannah M. Christensen, Matteo Colangeli, Danielle R. B. Coleman, Daan Crommelin, Stamen I. Dolaptchiev, Christian L.E. Franzke, Petra Friederichs, Peter Imkeller, Heikki Järvinen, Stephan Juricke, Vassili Kitsios, FrançOis Lott, Valerio Lucarini, Salil Mahajan, Timothy N. Palmer, Cc̀Cile Penland, Mirjana Sakradzija, Jin-Song Von Storch, Antje Weisheimer, Michael Weniger, Paul D. Williams, and Jun-Ichi Yano. Stochastic parameterization: Towards a new view of weather and climate models. Bull. Am. Meteorol. Soc., 0(0), 2016.

    Google Scholar 

  7. R. Buizza, M. Miller, and T. N. Palmer. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quarterly Journal of the Royal Meteorological Society, 125:2887–2908, October 1999.

    Article  Google Scholar 

  8. Daan Crommelin and Boualem Khouider. Stochastic and Statistical Methods in Climate, Atmosphere, and Ocean Science, pages 1377–1386. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

    Google Scholar 

  9. P. Davini, J. von Hardenberg, S. Corti, H. M. Christensen, S. Juricke, A. Subramanian, P. A. G. Watson, A. Weisheimer, and T. N. Palmer. Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations in climate simulations. Geosci. Model Dev. Discuss., 2016:1–29, 2016.

    Google Scholar 

  10. M. De La Chevrotière, Michèle, B. Khouider, and A.J. Majda. Stochasticity of convection in Giga-LES data. Clim. Dyn., 47(5):1845–1861, 2015.

    Google Scholar 

  11. Qiang Deng, Boualem Khouider, and Andrew J. Majda. The MJO in a coarse-resolution GCM with a stochastic multicloud parameterization. Journal of the Atmospheric Sciences, 72(1):55–74, 2015.

    Article  Google Scholar 

  12. Qiang Deng, Boualem Khouider, Andrew J. Majda, and R. S. Ajayamohan. Effect of stratiform heating on the planetary-scale organization of tropical convection. Journal of the Atmospheric Sciences, 73(1):371–392, 2016.

    Article  Google Scholar 

  13. Jesse Dorrestijn, Daan T Crommelin, A Pier Siebesma, Harmen JJ Jonker, and Frank Selten. Stochastic convection parameterization with Markov chains in an intermediate-complexity GCM. Journal of the Atmospheric Sciences, 73(3):1367–1382, 2016.

    Article  Google Scholar 

  14. T. J. Dunkerton, M. T. Montgomery, and Z. Wang. Tropical cyclogenesis in a tropical wave critical layer: easterly waves. Atmospheric Chemistry & Physics Discussions, 8:11149–11292, June 2008.

    Article  Google Scholar 

  15. Malay Ganai, R. Phani Murali Krishna, P. Mukhopadhyay, and M. Mahakur. The impact of revised simplified Arakawa-Schubert scheme on the simulation of mean and diurnal variability associated with active and break phases of Indian summer monsoon using cfsv2. Journal of Geophysical Research: Atmospheres, 121(16):9301–9323, 2016. 2016JD025393.

    Google Scholar 

  16. B. B. Goswami, B. Khouider, R. Phani, P. Mukhopadhyay, and A. J. Majda. Development and Implementation of a Stochastic Multi-cloud Model (SMCM) convective parameterization in a climate model: Scopes and Opportunities, page submitted. Springer, 2017.

    Google Scholar 

  17. B. B. Goswami, B. Khouider, R. Phani, P. Mukhopadhyay, and A. J. Majda. Implementation and calibration of a stochastic multicloud convective parameterization in the NCEP climate forecast system (cfsv2). Journal of Advances in Modeling Earth Systems, 9(3):1721–1739, 2017.

    Article  Google Scholar 

  18. B. B. Goswami, B. Khouider, R. Phani, P. Mukhopadhyay, and A. J. Majda. Improved tropical modes of variability in the NCEP Climate Forecast System (Version 2) via a stochastic multicloud model. Journal of the Atmospheric Sciences, 74(10):3339–3366, 2017.

    Article  Google Scholar 

  19. B. B. Goswami, B. Khouider, R. Phani, P. Mukhopadhyay, and A. J. Majda. Improving synoptic and intraseasonal variability in cfsv2 via stochastic representation of organized convection. Geophys. Res. Lett., 44:1104–1113, 2017.

    Article  Google Scholar 

  20. B. N. Goswami. A multiscale interaction model for the origin of the tropospheric QBO. J. Climate, 8:524–534, 1995.

    Article  Google Scholar 

  21. Bidyut B. Goswami, Medha Deshpande, P. Mukhopadhyay, Subodh K. Saha, Suryachandra A. Rao, Raghu Murthugudde, and B. N. Goswami. Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias. Clim. Dyn., 43(9–10):2725–2745, 11 2014.

    Google Scholar 

  22. Bidyut B. Goswami, R. P. M. Krishna, P. Mukhopadhyay, Marat Khairoutdinov, and B. N. Goswami. Simulation of the Indian summer monsoon in the superparameterized Climate Forecast System version 2: Preliminary results. J. Clim., 28(22):8988–9012, 11 2015.

    Google Scholar 

  23. W. W. Grabowski. Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58:978–997, May 2001.

    Article  Google Scholar 

  24. Wojciech W. Grabowski and Mitchell W. Moncrieff. Large-scale organization of tropical convection in two- dimensional explicit numerical simulations. Q. J. R. Meteorol. Soc., 127:445–468, 2001.

    Google Scholar 

  25. C. Hohenegger and B. Stevens. Preconditioning deep convection with cumulus congestus. J. Atmos. Sci., 70(2):448–464, 2013.

    Article  Google Scholar 

  26. George J. Huffman, Robert F. Adler, David T. Bolvin, and Eric J. Nelkin. The TRMM multi-satellite precipitation analysis (TMPA). In Satellite Rainfall Applications for Surface Hydrology, pages 3–22. Springer, 2010.

    Google Scholar 

  27. Meng-Pai Hung, Jia-Lin Lin, Wanqiu Wang, Daehyun Kim, Toshiaki Shinoda, and Scott J. Weaver. MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. Journal of Climate, 26(17):6185–6214, 2013.

    Article  Google Scholar 

  28. X. Jiang, T. Li, and B. Wang. Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17:1022–1039, 2004.

    Article  Google Scholar 

  29. Xianan Jiang, Duane E. Waliser, Prince K. Xavier, Jon Petch, Nicholas P. Klingaman, Steven J. Woolnough, Bin Guan, Gilles Bellon, Traute Crueger, Charlotte DeMott, Cecile Hannay, Hai Lin, Wenting Hu, Daehyun Kim, Cara-Lyn Lappen, Mong-Ming Lu, Hsi-Yen Ma, Tomoki Miyakawa, James A. Ridout, Siegfried D. Schubert, John Scinocca, Kyong-Hwan Seo, Eiki Shindo, Xiaoliang Song, Cristiana Stan, Wan-Ling Tseng, Wanqiu Wang, Tongwen Wu, Xiaoqing Wu, Klaus Wyser, Guang J. Zhang, and Hongyan Zhu. Vertical structure and physical processes of the madden-julian oscillation: Exploring key model physics in climate simulations. Journal of Geophysical Research: Atmospheres, 120(10):4718–4748, 2015. 2014JD022375.

    Google Scholar 

  30. Richard H. Johnson, Paul E. Ciesielski, James H. Ruppert, and Masaki Katsumata. Sounding-based thermodynamic budgets for dynamo. Journal of the Atmospheric Sciences, 72(2):598–622, 2015.

    Article  Google Scholar 

  31. A. Kacimi and B. Khouider. The transient response to an equatorial heat source and its convergence to steady state: implications for MJO theory. Climate Dynamics, July 2017.

    Article  Google Scholar 

  32. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. Ropelewski, J. Wang, Roy Jenne, and Dennis Joseph. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77:437–471, 1996.

    Article  Google Scholar 

  33. M. Khairoutdinov and D. Randall. High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63(12):3421–3436, 2006.

    Article  Google Scholar 

  34. Marat Khairoutdinov, David Randall, and Charlotte Demott. Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62:2136–2154, 2005.

    Article  Google Scholar 

  35. B. Khouider, J. Biello, and A. J. Majda. A stochastic multicloud model for tropical convection. Commun. Math. Sci., 8(1):187–216, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Khouider and A. J. Majda. A simple multicloud parameterization for convectively coupled tropical waves. part i: Linear analysis. J. Atmos. Sci., 63:1308–1323, 2006.

    Article  MathSciNet  Google Scholar 

  37. B. Khouider and A. J. Majda. Multicloud model for organized tropical convection: Enhanced congestus heating. J. Atmos. Sci., 65:895–914, 2008.

    Article  Google Scholar 

  38. G. N. Kiladis, K. H. Straub, and P. T. Haertel. Zonal and vertical structure of the madden-julian oscillation. J. Atmos. Sci., 62:2790–2809, August 2005.

    Article  Google Scholar 

  39. G. N. Kiladis, M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy. Convectively coupled equatorial waves. Rev. Geophys., 47:RG2003, doi:10.1029/2008RG000266, 2009.

    Google Scholar 

  40. D. Kim, K. Sperber, W. Stern, D. Waliser, I.-S. Kang, E. Maloney, S. Schubert, W. Wang, K. Weickmann, J. Benedict, M. Khairoutdinov, M.-I. Lee, R. Neale, M. Suarez, K. Thayer-Calder, and G. Zhang. Application of MJO simulation diagnostics to climate models. J. Climate, 22:6413–6436, 2009.

    Article  Google Scholar 

  41. J.-L. Lin, G. N. Kiladis, B. E. Mapes, K. M. Weickmann, K. R Sperber, W. Lin, M. Wheeler, S. D. Schubert, A. Del Genio, L. J. Donner, S. Emori, J.-F. Gueremy, F. Hourdin, P. J. Rasch, E. Roeckner, and J. F. Scinocca. Tropical intraseasonal variability in 14 IPCC AR4 climate models Part I: Convective signals. J. Climate, 19:2665–2690, 2006.

    Article  Google Scholar 

  42. J. W.-B. Lin and J. D. Neelin. Influence of a stochastic moist convective parameterization on tropical climate variability. Geophys. Res. Letters, 27:3691–3694, Nov 2000.

    Article  Google Scholar 

  43. J. W.-B. Lin and J. D. Neelin. Toward stochastic deep convective parameterization in general circulation models. Geophys. Res. Letters, 30(4):1162, February 2003.

    Google Scholar 

  44. Jian Ling, Chongyin Li, Tim Li, Xiaolong Jia, Boualem Khouider, Eric Maloney, Frederic Vitart, Ziniu Xiao, and Chidong Zhang. Challenges and opportunities in MJO studies. Bulletin of the American Meteorological Society, 98(2):ES53–ES56, 2017.

    Article  Google Scholar 

  45. A. J. Majda and B. Khouider. Stochastic and mesoscopic models for tropical convection. Proc. Natl. Acad. Sci. (USA), 99:1123–1128, 2002.

    Article  MATH  Google Scholar 

  46. A. J. Majda and S. N. Stechmann. The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106:8417–8422, 2009.

    Article  Google Scholar 

  47. Tomoki Miyakawa, Yukari N. Takayabu, Tomoe Nasuno, Hiroaki Miura, Masaki Satoh, and Mitchell W. Moncrieff. Convective momentum transport by rainbands within a Madden-Julian oscillation in a global nonhydrostatic model with explicit deep convective processes. Part I: Methodology and general results. Journal of the Atmospheric Sciences, 69(4):1317–1338, 2012.

    Article  Google Scholar 

  48. Mitchell W. Moncrieff and Ernst Klinker. Organized convective systems in the tropical western Pacific as a process in general circulation models: a TOGA COARE case-study. Q. J. Roy. Met. Soc., 123(540):805–827, 1997.

    Google Scholar 

  49. T. N. Palmer. A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. Quarterly Journal of the Royal Meteorological Society, 127(572):279–304, 2001.

    Google Scholar 

  50. H. L Pan and W. S. Wu. Implementing a mass flux convective parameterization scheme for the NMC medium-range forecast model. In Tenth Conference on Numerical Weather Prediction Am.Meterol.Soc, Portland, Oreg, 1994.

    Google Scholar 

  51. Karsten Peters, Traute Crueger, Christian Jakob, and Benjamin Möbis. Improved MJO-simulation in ECHAM6.3 by coupling a stochastic multicloud model to the convection scheme. Journal of Advances in Modeling Earth Systems, 2017.

    Google Scholar 

  52. R. S. Plant and G. C. Craig. A stochastic parameterization for deep convection based on equilibrium statistics. J. Atmos. Sci., 65:87–105, 2008.

    Article  Google Scholar 

  53. David Randall, Marat Khairoutdinov, Akio Arakawa, and Wojciech Grabowski. Breaking the cloud parameterization deadlock. Bulletin of the American Meteorological Society, 84(11):1547–1564, 2003.

    Article  Google Scholar 

  54. Masaki Satoh, Hirofumi Tomita, Hiroaki Miura, Shinichi Iga, and Tomoe Nasuno. Development of a global cloud resolving model a multi-scale structure of tropical convections. J. Earth Simulator, 3(September):11–19, 2005.

    Google Scholar 

  55. Courtney Schumacher, Minghua H. Zhang, and Paul E. Ciesielski. Heating structures of the TRMM field campaigns. J. Atmos. Sci., 64(7):2593–2610, 2007.

    Article  Google Scholar 

  56. A. Sobel and E. Maloney. An idealized semi-empirical framework for modeling the madden-julian oscillation. Journal of Atmospheric Sciences, 69:1691–1705, may 2012.

    Article  Google Scholar 

  57. Justin P. Stachnik, Courtney Schumacher, and Paul E. Ciesielski. Total heating characteristics of the ISCCP tropical and subtropical cloud regimes. J. Clim., 26(18):7097–7116, 2013.

    Google Scholar 

  58. I. B. Troen and L. Mahrt. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Boundary Layer Meteorol., 37(1):129–148, 1986.

    Article  Google Scholar 

  59. M. Waite and B. Khouider. The deepening of tropical convection by congestus preconditioning. J. Atmos. Sci., 67:2601–2615, 2010.

    Article  Google Scholar 

  60. M. L. Waite and B. Khouider. Boundary layer dynamics in a simple model for convectively coupled gravity waves. J. Atmos. Sci., 66:2780–2795, 2009.

    Article  Google Scholar 

  61. John M. Wallace and V. E. Kousky. Observational evidence of kelvin waves in the tropical stratosphere. Journal of the Atmospheric Sciences, 25(5):900–907, 1968.

    MathSciNet  Google Scholar 

  62. B. Wang and H. Rui. Dynamics of the coupled moist Kelvin–Rossby wave on an equatorial beta-plane. J. Atmos. Sci., 47:397–413, February 1990.

    Article  Google Scholar 

  63. Yong Wang and Guang J. Zhang. Global climate impacts of stochastic deep convection parameterization in the ncarcam5. Journal of Advances in Modeling Earth Systems, 8(4):1641–1656, 2016.

    Article  Google Scholar 

  64. Yong Wang, Guang J. Zhang, and George C. Craig. Stochastic convective parameterization improving the simulation of tropical precipitation variability in the NCAR CAM5. Geophys. Res. Lett., 43(12):6612–6619, 2016.

    Article  Google Scholar 

  65. M. Wheeler and G. N. Kiladis. Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56(3):374–399, 1999.

    Article  Google Scholar 

  66. Michio Yanai and T. Maruyama. Stratospheric wave disturbances propagating over the equatorial pacific. J. Met. Soc. Japan, 44(5):291–294, 1966.

    Article  Google Scholar 

  67. Steven Esbensen Yanai, Michio and Jan-Hwa Chu. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. Journal of the Atmospheric Sciences, 30(4):611–627, May 1973.

    Google Scholar 

  68. Da Yang and Andrew P. Ingersoll. Testing the hypothesis that the MJO is a mixed Rossby-gravity wave packet. Journal of the Atmospheric Sciences, 68(2):226–239, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khouider, B. (2019). SMCM in CFS: Improving the Tropical Modes of Variability. In: Models for Tropical Climate Dynamics. Mathematics of Planet Earth, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-17775-1_12

Download citation

Publish with us

Policies and ethics