Skip to main content

Electrical Conductivity and 7Li NMR Spin-Lattice Relaxation in Amorphous, Nano- and Microcrystalline Li2O-7GeO2

  • Conference paper
  • First Online:
Nanocomposites, Nanostructures, and Their Applications (NANO 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 221))

Included in the following conference series:

Abstract

Differential scanning calorimetry showed that on heating Li2O-7GeO2 glass crystallized in stages. X-ray phase analysis and atomic force microscopy were used to study the structure and morphology of the phase states obtained at glass devitrification. It was shown that glass devitrified through an intermediate state in which the sample volume was occupied by nanometer-sized ordered phase nuclei with Li2Ge4O9 and Li2Ge7O15 structures surrounded by an amorphous medium. Further heating resulted in complete sample crystallization and transformation of nanometer-sized nuclei into micrometer-sized Li2Ge7O15 crystallites. It was shown that in comparison with amorphous and completely crystallized polycrystalline states, the intermediate nanocrystalline state has an increased electrical conductivity σ. Complete crystallization on heating was accompanied by sharp and irreversible decrease of σ. Charge transfer in amorphous, nano- and microcrystalline states of Li2O-7GeO2 composition was associated with motion of lithium ions which were weakly bound to the germanium-oxygen structural framework. Complex impedance spectra were studied in the glass, intermediate and polycrystalline states of Li2O-7GeO2. It was shown that the hodographs for the intermediate nanocrystalline state reflected charge transfer within the ordered nuclei and the embedding amorphous medium. The results of conductivity and impedance spectra measurements were supplemented by 7Li NMR spin-lattice relaxation studies. Comparative analysis of the data of electrical properties measurements and NMR relaxation studies gave evidence that increased conductivity of the intermediate nanocrystalline state resulted from high mobility of the Li+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maier J (2004) Ionic transport in nano-sized systems. J Solid State Ionics 175:7–12. https://doi.org/10.1016/j.ssi.2004.09.051

    Article  Google Scholar 

  2. Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. J Nat Mater 4(11):805–815. https://doi.org/10.1038/nmat1513

    Article  ADS  Google Scholar 

  3. Murthy MK (1964) Studies in germanium oxide systems: I, phase equilibria in the system Li2O–GeO2. J Am Ceram Soc 47(7):328–331. https://doi.org/10.1111/j.1151-2916.1964.tb14433.x

    Article  Google Scholar 

  4. Haussuhl S, Wallrafen F, Recker K, Eckstein J (1980) Growth, elastic properties and phase transition of orthorhombic Li2Ge7O15. Z Kristallogr 153:329–337

    Google Scholar 

  5. Vollenke H, Wittman A, Nowotny H (1970) Die kristall-structure des lithiumhepttagermanats Li2Ge7O15. Monatch Chem 101:46–45

    Article  Google Scholar 

  6. Iwata Y, Shibuya I, Wada M, Sawada A, Ishibashi Y (1987) Neutron diffraction study of structural phase transition in ferroelectric Li2Ge7O15. J Phys Soc Jpn 56(7):2420–2427. https://doi.org/10.1143/JPSJ.56.2420

    Article  ADS  Google Scholar 

  7. Ilyushin GD, Dem’yanets LN (2000) Crystal chemistry of germanates: characteristic structural features of Li, Ge-germanates. Crystallography Rep 45(4):626–632. https://doi.org/10.1134/1.1306574

    Article  ADS  Google Scholar 

  8. Liebert BE, Huggins RA (1976) Ionic conductivity of Li4GeO4, Li2GeO3 and Li2Ge7O15. Mat Res Bull 11(5):533–538. https://doi.org/10.1016/0025-5408(76)90235-X

    Article  Google Scholar 

  9. Volnyanskii MD, Trubitsyn MP, Obaidat YAH (2008) Anisotropy of the electrical conductivity of lithium heptagermanate crystals. Phys Solid State 50(3):422–424. https://doi.org/10.1134/S1063783408030049

    Article  ADS  Google Scholar 

  10. Trubitsyn MP, Volnyanskii MD, Obaidat YAH (2008) Ionic conduction in Li2Ge7O15 crystals doped with Cr and Mn ions. Phys Solid State 50(7):1234–1237. https://doi.org/10.1134/S106378340807007X

    Article  ADS  Google Scholar 

  11. Volnyanskii MD, Plyaka SN, Trubitsyn MP, Obaidat YAH (2012) Ion conduction and space-charge polarization processes in Li2Ge7O15 crystals. Phys Solid State 54(3):499–503. https://doi.org/10.1134/S1063783412030353

    Article  ADS  Google Scholar 

  12. Volnianskii M, Plyaka S, Trubitsyn M, Obaidat Y (2014) Frequency dispersion of conductivity and complex impedance in Li2Ge7O15 single crystal. Ferroelectrics 462(1):74–79. https://doi.org/10.1080/00150193.2014.890880

    Article  Google Scholar 

  13. Pernice P, Aronne A, Marotta M (1992) The non-isothermal devitrification of lithium tetragermanate glass. Mater Chem Phys 30(3):195–198. https://doi.org/10.1016/0254-0584(92)90223-u

    Article  Google Scholar 

  14. Pernice P, Aronne A, Marotta M (1992) Crystallizing phases and kinetics of crystal growth in Li2O-19GeO2 glass. J Mater Sci Lett 11:427–429

    Article  Google Scholar 

  15. Marotta A, Pernice P, Aronne A, Catauro M (1993) The non-isothermal devitrification of lithium germanate glasses. J Ther Anal 40(1):181–188. https://doi.org/10.1007/BF02546568

    Article  Google Scholar 

  16. Aronne A, Catauro M, Pernice P, Marotta A (1993) Gel synthesis and crystallization of Li2O - 7GeO2 glass powders. Thermochim Acta 216:169–176

    Article  Google Scholar 

  17. Volnyanskii MD, Nesterov AA, Trubitsyn MP (2012) Thermal and electrical properties of glass-ceramics based on lithium heptagermanate. Phys Solid State 54(5):945–946. https://doi.org/10.1134/S1063783412050459

    Article  ADS  Google Scholar 

  18. Nesterov OO, Trubitsyn MP, Volnyanskii DM (2015) Metastable state of the Li2O–11.5GeO2 glass ceramics with a high electrical conductivity. Phys Solid State 57(4):683–688. https://doi.org/10.1134/S1063783415040204

    Article  ADS  Google Scholar 

  19. Volnianskii MD, Nesterov OO, Trubitsyn MP (2014) Devitrification of the Li2O – x(GeO2) glass. Ferroelectrics 466(1):126–130. https://doi.org/10.1080/00150193.2014.895173

    Article  Google Scholar 

  20. Nesterov OO, Trubitsyn MP, Nedilko SG, Volnianskii MD, Plyaka SM, Rybak YO (2018) Ionic conductivity in multiphase Li2O-7GeO2 compounds. Acta Phys Polonica 133(4):892–896. https://doi.org/10.12693/APhysPolA.133.892

    Article  Google Scholar 

  21. Gabriel J, Petrov OV, Kim Y, Martin SW, Vogel M (2015) Lithium ion dynamics in Li2S+GeS2+GeO2 glasses studied using 7Li NMR field-cycling relaxometry and line-shape analysis. Solid State Nucl Magn Reson 70:53–62. https://doi.org/10.1016/j.ssnmr.2015.06.004

    Article  Google Scholar 

  22. Barsoukov E, Macdonald JR (2005) Impedance spectroscopy. Theory, experiment and applications, 2nd edn. Wiley, New York, p 616. ISBN: 978-0-471-64749-2

    Book  Google Scholar 

  23. Nesterov OO, Trubitsyn MP, Plyaka SM, Volnyanskii DM (2015) Complex impedance spectra of glass and glass ceramic Li2O–11.5GeO2. Phys Solid State 57(9):1759–1763. https://doi.org/10.1134/S1063783415090255

    Article  ADS  Google Scholar 

  24. Böhmer R, Jeffrey KR, Vogel M (2007) Solid-state Li NMR with applications to the translational dynamics in ion conductors. Prog Nucl Magn Reson Spectrosc 50(2–3):87–174. https://doi.org/10.1016/j.pnmrs.2006.12.001

    Article  Google Scholar 

  25. Böhmer R, Storek M, Vogel M (2018) NMR studies of ionic dynamics. In: Hodgkinson P (ed) Modern methods in solid-state NMR: a practitioners guide, vol 7. Royal Society of Chemistry, pp 193–230. https://doi.org/10.1039/9781788010467-00193

    Chapter  Google Scholar 

  26. Torrey HC (1953) Nuclear spin relaxation by translational diffusion. Phys Rev 92(4):962–969. https://doi.org/10.1103/physrev.92.962

    Article  ADS  MATH  Google Scholar 

  27. Kimmich R, Voigt G (1978) Zeitschrift fur Naturforschung. Astrophysik. Physik und Physikalische Chemie 3BA:1294–1306

    Google Scholar 

  28. Deutch JM (1972) J Chem Phys 56:6076–6081

    Article  ADS  Google Scholar 

  29. Avogadro A, Villa M (1977) Nuclear magnetic resonance in a two dimensional system. J Chem Phys 66(6):2359–2367. https://doi.org/10.1063/1.434272

    Article  ADS  Google Scholar 

  30. Bjorkstam JL, Villa M (1980) Second-order quadrupolar and low-dimensionality effects upon NMR resonance spectra. Phys Rev B 22(11):5025–5032. https://doi.org/10.1103/physrevb.22.5025

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nesterov, O. et al. (2019). Electrical Conductivity and 7Li NMR Spin-Lattice Relaxation in Amorphous, Nano- and Microcrystalline Li2O-7GeO2 . In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-030-17759-1_6

Download citation

Publish with us

Policies and ethics