Skip to main content

Effective Hamiltonians for Magnetic Ordering Within Periodic Anderson-Hubbard Model for Quantum Dot Array

  • Conference paper
  • First Online:
Nanocomposites, Nanostructures, and Their Applications (NANO 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 221))

Included in the following conference series:

  • 487 Accesses

Abstract

A generalized model of strongly correlated electron system in quantum dot arrays with magnetic impurity levels hybridized with conduction band is considered. The effective Hamiltonians on the basis of configurational representation with Hubbard X-operators describing the localized spin subsystem are developed for the regime of strong electron correlations. Comparison of indirect exchange integrals in single-particle energy spectrum give hints for understanding mechanisms of the magnetic ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chakraborty T (1999) Quantum dots: a survey of the properties of artificial atoms. Elsevier Science, Amsterdam

    Chapter  Google Scholar 

  2. Lan H, Ding Y (2012) Ordering, positioning and uniformity of quantum dot arrays. Nano Today 7:94–123

    Article  Google Scholar 

  3. Fesenko O, Yatsenko L (2018) Nanooptics, Nanophotonics, nanostructures, and their applications. NANO 2017. Springer proceedings in physics, vol. Springer, Cham, p 210

    Google Scholar 

  4. Anderson PW (1961) Localized magnetic states in metals. Phys Rev 124:41–53

    Article  ADS  MathSciNet  Google Scholar 

  5. Didukh LD, Stasyuk IV (1968) Effective Hamiltonian in the Anderson model. Fiz Met Metalov 26:582–588. [In Russian]

    Google Scholar 

  6. Didukh LD, Stasyuk IV [In Russian] (1968) On ferromagnetism theory with account of s-d transfer. Ukr Fiz Zhurn 13:1774–1780. In Russian]

    Google Scholar 

  7. Zhang P, Xue Q-K, Wang Y, Xie XC (2002) Spin-dependent transport through an interacting quantum dot. Phys Rev Lett 89:286803

    Article  ADS  Google Scholar 

  8. Dias da Silva L, Ingersent K, Sandler N, Ulloa SE (2008) Finite-temperature conductance signatures of quantum criticality in double quantum dots. Phys Rev B 78:153304

    Article  ADS  Google Scholar 

  9. Nikkarila J-P, Koskinen M, Manninen M (2008) Magnetism of quantum dot clusters: a Hubbard model study. Eur Phys J B 64:95–103

    Article  ADS  Google Scholar 

  10. Hang Xie, Xiao Cheng, Xiaolong Lv (2018) Steady and dynamic magnetic phase transitions in interacting quantum dots arrays coupled with leads. Available via arxiv.org. https://arxiv.org/pdf/1805.04939

  11. Didukh L, Kramar O (2005) Metallic ferromagnetism in the systems with strongly correlated electrons. Condens Matter Phys 8:547–564

    Article  Google Scholar 

  12. Didukh L, Yu S, Kramar O (2008) Electron correlations in narrow energy bands: modified polar model approach. Condens Matter Phys 11:443–454

    Article  Google Scholar 

  13. Górski G, Mizia J, Kucab K (2015) Alternative equation of motion approach applied to transport through a quantum dot. Phys E 73:76–82

    Article  Google Scholar 

  14. Górski G, Mizia J, Kucab K (2016) Modified equation of motion approach for metallic ferromagnetic systems with the correlated hopping interaction. Phys Status Solidi B 253:1202–1209

    Article  ADS  Google Scholar 

  15. Górski G, Kucab K (2018) Effect of assisted hopping on spin-dependent thermoelectric transport through correlated quantum dot. Phys B Condens Matter 545:337–345

    Article  ADS  Google Scholar 

  16. Didukh L, Skorenkyy Y, Hankevych V, Kramar O (2001) Ground state ferromagnetism in a doubly orbitally degenerate model. Phys Rev B 64:144428

    Article  ADS  Google Scholar 

  17. Didukh L, Kramar O, Skorenkyy Y (2002) Ground state energy of metallic ferromagnet in a generalized Hubbard model. Phys Status Solidi B 229:1241–1254

    Article  ADS  Google Scholar 

  18. Didukh L, Kramar O (2002) Metallic ferromagnetism in a generalized Hubbard model. Fizika Nizkikh Temperatur (Kharkov) 28:42–50

    Google Scholar 

  19. Didukh L, Kramar O, Yu S (2005) Metallic ferromagnetism in a generalized Hubbard model. In: Murray VN (ed) New developments in ferromagnetism research. Nova Science Publishers Inc, New York

    Google Scholar 

  20. Skorenkyy Y, Didukh L, Kramar O, Dovhopyaty Y (2007) Mott transition, ferromagnetism and conductivity in the generalized Hubbard model. Acta Phys Pol A 111:635–644

    Article  ADS  Google Scholar 

  21. Górski G, Mizia J, Kucab K (2014) New Green’s function approach describing the ferromagnetic state in the Hubbard model with correlated hopping. Phys Status Solidi B 251:2294–2301

    Article  ADS  Google Scholar 

  22. Didukh L (2018) 3d-electrons contribution to cohesive energy of 3d-metals. Condensed Matter Physics 21:13701

    Article  Google Scholar 

  23. Izyumov YA, Kurmaev EZ (2008) Materials with strong electron correlations. Physics-Uspekhi 51:23

    Article  ADS  Google Scholar 

  24. Shishido H et al (2010) Tuning the dimensionality of the heavy fermion compound CeIn3. Science 327:980–983

    Article  ADS  Google Scholar 

  25. Zaitsev RO, Kuz’min EV, Ovchinnikov SG (1986) Fundamental ideas on metal-dielectric transitions in 3d-metal compounds. Sov Phys Usp 29:322–342

    Article  ADS  Google Scholar 

  26. Fazekas P (1999) Lecture notes on electron correlation and magnetism. World Scientific Publishing, Singapore

    Book  Google Scholar 

  27. Didukh L, Hankevych V, Kramar O, Skorenkyy Y (2002) Itinerant ferromagnetism of systems with orbital degeneracy. J Phys Condens Matter 14:827–835

    Article  ADS  Google Scholar 

  28. Masuda S, Tan KY, Nakahara M (2018) Spin-selective electron transfer in quantum dot array. Phys Rev B 97:045418

    Article  ADS  Google Scholar 

  29. Górski G, Mizia J (2009) Hubbard model with intersite kinetic correlations. Phys Rev B 83:064410

    Article  ADS  Google Scholar 

  30. Skorenkyy Y, Kramar O, Didukh L, Dovhopyaty Y (2018) Electron correlation effects in theoretical model of doped fullerides. In: Fesenko O, Yatsenko L (eds) Nanooptics, nanophotonics, nanostructures, and their applications. NANO 2017. Springer proceedings in physics, vol 210. Springer, Cham

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Kramar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Didukh, L., Skorenkyy, Y., Kramar, O., Dovhopyaty, Y. (2019). Effective Hamiltonians for Magnetic Ordering Within Periodic Anderson-Hubbard Model for Quantum Dot Array. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-030-17759-1_30

Download citation

Publish with us

Policies and ethics