Skip to main content

Modeling of Dielectric Permittivity of Polymer Composites with Mixed Fillers

  • Conference paper
  • First Online:
Nanocomposites, Nanostructures, and Their Applications (NANO 2018)

Abstract

An effective permittivity of polymer composites (CMs) with randomly distributed electroconductive and dielectric nanoparticles was considered within the Maxwell-Garnett (MG) model. The modeling of effective permittivity showed that the content and parameters of conductive filler particles affect the value and frequency dependence of permittivity of CMs. It was found that at equal parameters of electroconductive inclusions in CMs such as aspect ratio (AR), electrical conductivity, and content (lower than the percolation threshold), the use of 1D (carbon nanotubes CNT) particles as filler leads to sufficiently higher values of real and imaginary parts of permittivity and shifts the maximum of dielectric loss into lower frequency range of electromagnetic radiation (EMR) compared with 2D (graphite nanoplatelets GNP) filler particles. The use of mixed 1D/2D conductive filler allows extending the frequency range of dielectric loss in CMs varying the aspect ratio and electrical conductivity of fillers. The addition of spherical highly dielectric disperse particles (e.g., BaTiO3 at content in 10 vol.%) into CMs with 1D (or 2D) conductive filler slightly increases permittivity, however, increases the percolation threshold, so the larger number of conductive particles may be inserted into polymer matrix before percolation and higher permittivity may be achieved. The increase of content and aspect ratio of BT particles in three-phase carbon/BaTiO3/polymer composites may result in sufficient increase of permittivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakagawa T, Kageyama K, Takagi H, Sakabe Y, Kirihara S, Miyamoto Y (2008) Stereolithographic fabrication and microwave properties of 1D tunable photonic crystals composed of YIG and alumina plates in resin. J Am Ceram Soc 91:2195–2200

    Article  Google Scholar 

  2. Jain R-K, Dubey A, Soni A, Gupta S-K, Shami TC (2013) Barium titanate flakes based composites for microwave absorbing applications. Proc Appl Ceram 7:189–193

    Article  Google Scholar 

  3. Xu N, Hu L, Zhang Q, Xiao X, Yang H, Yu E (2015) Significantly enhanced dielectric performance of poly(vinylidene fluoride-co-hexafluoropylene)-based composites filled with hierarchical flower-like TiO2 particles. ACS Appl Mater Interfaces 7:27373–27381

    Article  Google Scholar 

  4. Wang F, Wang J-W, Li S, Xiao J (2009) Dielectric properties of epoxy composites with modified multiwalled carbon nanotubes. Polym Bull 63:101–110

    Article  Google Scholar 

  5. Min C, Yu D, Cao J, Wang G, Feng L (2013) A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon 55:116–125

    Article  Google Scholar 

  6. Wang Z, Luo J, Zhao G-L (2014) Dielectric and microwave attenuation properties of graphene nanoplatelet–epoxy composites. AIP Adv 4:017139–017139

    Article  ADS  Google Scholar 

  7. Vovchenko L, Matsui l OV, Launetz V, Lazarenko A (2008) Nanocarbon-epoxy composites as electromagnetic shielding materials. Mol Cryst Liq Crys 497:46/[378]–54/[386]

    Article  Google Scholar 

  8. Vovchenko L, Matsui L, Oliynyk V, Launetz V (2010) Attenuation of electromagnetic radiation by graphite-epoxy composites. Phys Status Solidi C 7:1260–1263

    Google Scholar 

  9. Vovchenko L, Matsui L, Oliynyk V, Launetz V, Zhuravkov O (2013) Electrical and shielding properties of epoxy composites containing hybrid carbon fillers. Mat-wiss u Werkstofftech 44:249–253

    Article  Google Scholar 

  10. Zhang X, Ma Y, Zhao C, Yang V (2015) High dielectric performance composites with a hybrid BaTiO3/graphene as filler and poly(vinylidene fluoride) as matrix. ECS J Solid State Sci Technol 4:N47–N54

    Article  ADS  Google Scholar 

  11. Xiao Y, Wang W, Lin T, Chen X, Zhang Y, Yang J, Wang Y, Zhou Z (2016) Largely enhanced thermal conductivity and high dielectric constant of poly(vinylidene fluoride)/boron nitride composites achieved by adding a few carbon nanotubes. J Phys Chem C 120:6344–6355

    Article  Google Scholar 

  12. Li C, Yu S, Luo S, Yang W, Ge Z, Huang H, Sun R, Wong C-P (2016) Enhancement of dielectric performance up to GHz of the composites with polymer encapsulated hybrid BaTiO3–Cu as fillers: multiple interfacial polarizations playing a key role. RSC Adv 6:36450–36458

    Article  Google Scholar 

  13. Zhao H, Yang M-H, He D, Bai J (2016) Enhanced dielectric performance of polyvinylidene fluoride composites with all-carbon hybrid architecture: vertically aligned carbon nanotube arrays on graphite nanoplatelets. J Mater Chem C 4:8911–8919

    Article  Google Scholar 

  14. Kuzhir P, Paddubskaya A, Bychanok D, Nemilentsau A, Shuba M, Plusch A, Maksimenko S, Bellucci S, Coderoni L, Micciulla F (2011) Microwave probing of nanocarbon based epoxy resin composite films: toward electromagnetic shielding. Thin Solid Films 519:4114–4118

    Article  ADS  Google Scholar 

  15. Koledintseva MY, Chandra SKR, DuBroff RE, Schwartz RW (2006) Modeling of dielectric mixture containing conducting inclusions with statically distributed aspect ratio. Prog Electromag Res, PIER 66:213–228

    Article  Google Scholar 

  16. Sun LL, Li B, Mitchell G, Zhong WH (2010) Structure-induced high dielectric constant and low loss of CNF/PVDF composites with heterogeneous CNF distribution. Nanotechnology 21(8):305702

    Article  ADS  Google Scholar 

  17. Nan C-W, Shen Y, Ma J (2010) Physical properties of composites near percolation. Annu Rev Mater Res 40:131–151

    Article  ADS  Google Scholar 

  18. Clayton LM, Knudsen B, Cinke M, Meyyappan M, Harmon JP (2007) DC conductivity and interfacial polarization in PMMA/nanotube and PMMA/soot composites. J Nanosci Nanotechnol 7:3572–3579

    Article  Google Scholar 

  19. Koledintseva MY, DuBroff RE, Schwartz RW, Drewniak JL (2007) Double statistical distribution of conductivity and aspect ratio of inclusions in dielectric mixtures at microwave frequencies. Progress In Electromagnetics Research, PIER 77:193–214

    Article  Google Scholar 

  20. Nisanci MH, Paulis F, Koledintseva MY, Drewniak JL, Orlandi A (2012) From Maxwell Garnett to Debye model for electromagnetic simulation of composite dielectrics—Part II: random cylindrical inclusions. IEEE Trans Electromagn Compat 54:280–289

    Article  Google Scholar 

  21. Bandaru PR (2007) Electrical properties and applications of carbon nanotube structures. J Nanosci Nanotechnol 7:1239–1267

    Article  Google Scholar 

  22. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899

    Article  Google Scholar 

  23. Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401

    Article  Google Scholar 

  24. Perets Y, Aleksandrovych L, Melnychenko M, Lazarenko O, Vovchenko L, Matsui L (2017) The electrical properties of hybrid composites based on multiwall carbon nanotubes with graphite nanoplatelets. Nanoscale Res Lett 12(406):406

    Article  ADS  Google Scholar 

  25. Vovchenko L, Matsui L, Perets Y, Sagalianov I, Yakovenko O (2018) Electrical and thermal conductivity of epoxy nanocomposites with hybrid fillers. In: Bartul Z, Trenor J (eds) Advances in nanotechnology, vol 21. Nova Science Publishers, New York, pp 1–85

    Google Scholar 

  26. Hu N, Karube YI, Arai M, Watanabe T, Yan C, Li Y, Liu Y, Fukunaga H (2010) Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor. Carbon 48:680–687

    Article  Google Scholar 

  27. Brown M, Jagannadham K (2013) Interfacial effects in the electrical conductivity and viscous deformation of multiwall carbon nanotube–epoxy composites prepared by sonication. J Compos Mater 47:3413–3420

    Article  Google Scholar 

  28. Zare Y, Rhee KY (2017) A simple methodology to predict the tunneling conductivity of polymer/CNT nanocomposites by the roles of tunneling distance, interphase and CNT waviness. RSC Adv 7:34912–34921

    Article  Google Scholar 

  29. Vovchenko LL, Matsui LY, Perets YS, Milovanov YS (2018) Chapter 24 Dielectric properties and AC conductivity of epoxy/hybrid nanocarbon filler composites. Springer Proceedings in Physics 214:377–393

    Article  Google Scholar 

  30. Von Hippel A (1995) Dielectrics and waves. Artech House, Boston/London

    Google Scholar 

  31. Zhang X, Ma Y, Zhao C, Yang V (2015) High dielectric performance composites with a hybrid BaTiO3/graphene as filler and poly(vinylidene fluoride) as matrix. ECS J Solid State Sci Technol 4:N47–N54

    Article  ADS  Google Scholar 

  32. Xiao Y, Wang W, Lin T, Chen X, Zhang Y, Yang J, Wang Y, Zhou Z (2016) Largely enhanced thermal conductivity and high dielectric constant of poly(vinylidene fluoride)/boron nitride composites achieved by adding a few carbon nanotubes. J Phys Chem C 120:6344–6355

    Article  Google Scholar 

  33. Zhao H, Yang M-H, He D, Bai J (2016) Enhanced dielectric performance of polyvinylidene fluoride composites with all-carbon hybrid architecture: vertically aligned carbon nanotube arrays on graphite nanoplatelets. J Mater Chem C 4:8911–8919

    Article  Google Scholar 

  34. Li C, Yu S, Luo S, Yang W, Ge Z, Huang H, Sun R, Wong C-P (2016) Enhancement of dielectric performance up to GHz of the composites with polymer encapsulated hybrid BaTiO3–Cu as fillers: multiple interfacial polarizations playing a key role. RSC Adv 6:36450–36458

    Article  Google Scholar 

  35. Paulis F, Nisanci MH, Koledintseva MY, Drewniak J, Orlandi A (2011) From Maxwell Garnett to Debye model for electromagnetic simulation of composite dielectrics part I: random spherical inclusions. IEEE Trans Electromagn Compat 53:933–942

    Article  Google Scholar 

  36. Lozitsky O, Vovchenko L, Matsui L et al. (2017) Electromagnetic shielding properties of epoxy composites with hybrid filler nanocarbon/BaTiO3. In Abstract Book International research and practice conference Nanotechnology and Nanomaterials NANO-2017, 23-26 August 2017, Chernivtsi, Ukraine. P.197

    Google Scholar 

  37. Zepu Wang Z, Nelson JK, Miao J, Linhardt RJ, Schadler LS (2012) Effect of high aspect ratio filler on dielectric properties of polymer composites: a study on barium titanate fibers and graphene platelets. IEEE Trans Dielectr Electr Insul 19:960–967

    Article  Google Scholar 

  38. Ávila HA, Reboredo MM, Parra R, Castro MS (2015) Dielectric permittivity calculation of composites based on electrospun barium titanate fibers. Mater Res Exp 2:045302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luidmila L. Vovchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vovchenko, L.L., Lozitsky, O.V., Matsui, L.Y., Yakovenko, O.S., Oliynyk, V.V., Zagorodnii, V.V. (2019). Modeling of Dielectric Permittivity of Polymer Composites with Mixed Fillers. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-030-17759-1_24

Download citation

Publish with us

Policies and ethics