Skip to main content

Preparation and Complex Study of Thick Films Based on Nanostructured Cu0.1Ni0.8Co0.2Mn1.9O4 and Cu0.8Ni0.1Co0.2Mn1.9O4 Ceramics

  • Conference paper
  • First Online:
Nanocomposites, Nanostructures, and Their Applications (NANO 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 221))

Included in the following conference series:

  • 485 Accesses

Abstract

A complex investigation of structural and electrical properties in addition to the peculiarities of the ageing process in thick films based on nanostructured Cu0.1Ni0.8Co0.2Mn1.9O4 and Cu0.8Ni0.1Co0.2Mn1.9O4 ceramics were performed. Basic bulk ceramics and thick films were characterized by X-ray diffraction and scanning electron microscopy analysis. Thick films based on Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics showed a higher density and microstructure homogeneity over those based on Cu0.8Ni0.1Co0.2Mn1.9O4 ceramics. The main electrical parameters of planar thick films were determined. Depending on the chemical composition of ceramics, the prepared thick films showed the resistivities within the range of 2÷40 Ω·m, being approximately 1–2 orders of magnitude larger than those of disc thermistor elements. The values of constant B25/85 ranged from 2980 to 3690 K. The thermal “shock” effect in the initial stage of isothermal exposure at 170 °C with future stabilization of electrical resistance at this level up to the final degradation test was revealed. It is shown that sensitivity to high temperature and the stabilization of electrical parameters in the thick films studied can be used for preparation of sensor components based on thick films for micro- and nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guillemet-Fritsch S, Chanel C, Sarrias J, Bayonne S, Rousset A, Alcobe X, Sarriòn MM (2000) Structure, thermal stability and electrical properties of zinc manganites. Solid State Ionics 128(1–4):233–242. https://doi.org/10.1016/S0167-2738(99)00340-9

    Article  Google Scholar 

  2. Hosseini M (2000) The effect of cation composition on the electrical properties and aging of Mn-Co-Ni thermistors. Ceram Int 26(3):245–249. https://doi.org/10.1016/S0272-8842(99)00049-8

    Article  Google Scholar 

  3. De Torres HB, Rensch C, Fischer M, Schober A, Hoffmann M, Müller J (2010) Thick film flow sensor for biological microsystems. Sensors Actuators A Phys 160(1–2):109–115. https://doi.org/10.1016/j.sna.2010.04.010

    Article  Google Scholar 

  4. Gebhardt S, Seffner L, Schlenkrich F, Schönecker A (2007) PZT thick films for sensor and actuator applications. J Eur Ceram Soc 27(13–15):4177–4180. https://doi.org/10.1016/j.jeurceramsoc.2007.02.122

    Article  Google Scholar 

  5. Huang J, Hao Y, Lin H, Zhang D, Song J, Zhou D (2003) Preparation and characteristic of the thermistor materials in the thick-film integrated temperature–humidity sensor. Mater Sci Eng B 99(1–3):523–526. https://doi.org/10.1016/S0921-5107(02)00547-0

    Article  Google Scholar 

  6. Schmidt R, Basu A, Brinkman AW (2004) Production of NTCR thermistor devices based on NiMn2O4+ δ. J Eur Ceram Soc 24(6):1233–1236. https://doi.org/10.1016/S0955-2219(03)00415-1

    Article  Google Scholar 

  7. Jagtap S, Rane S, Mulik U, Amalnerkar D (2007) Thick film NTC thermistor for wide range of temperature sensing. Microelectron Int 24(2):7–13. https://doi.org/10.1108/13565360710745539

    Article  Google Scholar 

  8. Feteira A (2009) Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J Am Ceram Soc 92(5):967–983. https://doi.org/10.1111/j.1551-2916.2009.02990.x

    Article  Google Scholar 

  9. Martínez-Cisneros CS, Ibáñez-García N, Valdés F, Alonso J (2007) Miniaturized total analysis systems: integration of electronics and fluidics using low-temperature co-fired ceramics. Anal Chem 79(21):8376–8380. https://doi.org/10.1021/ac0713398

    Article  Google Scholar 

  10. Ai L, Jiang J (2010) Influence of annealing temperature on the formation, microstructure and magnetic properties of spinel nanocrystalline cobalt ferrites. Curr Appl Phys 10(1):284–288. https://doi.org/10.1016/j.cap.2009.06.007

    Article  ADS  Google Scholar 

  11. Shpotyuk O, Balitska V, Brunner M, Hadzaman I, Klym H (2015) Thermally-induced electronic relaxation in structurally-modified Cu0.1Ni0.8Co0.2Mn1.9O4 spinel ceramics. Phys B Condens Matter 459:116–121. https://doi.org/10.1016/j.physb.2014.11.023

    Article  ADS  Google Scholar 

  12. Klym H, Ingram A, Shpotyuk O, Filipecki J (2010) PALS as characterization tool in application to humidity-sensitive electroceramics. 27th international conference on microelectronics proceedings (MIEL) 239–242. https://doi.org/10.1109/MIEL.2010.5490492

  13. Klym H, Hadzaman I, Shpotyuk O (2015) Influence of sintering temperature on pore structure and electrical properties of technologically modified MgO-Al2O3 ceramics. Mater Sci 21(1):92–95. https://doi.org/10.5755/j01.ms.21.1.5189

    Article  Google Scholar 

  14. Klym H, Ingram A, Shpotyuk O, Hadzaman I, Hotra O, Kostiv Y (2016) Nanostructural free-volume effects in humidity-sensitive MgO-Al2O3 ceramics for sensor applications. J Mater Eng Perform 25(3):866–873. https://doi.org/10.1007/s11665-016-1931-9

    Article  Google Scholar 

  15. Klym H, Ingram A, Shpotyuk O, Hadzaman I, Solntsev V (2016) Water-vapor sorption processes in nanoporous MgO-Al2O3 ceramics: the PAL spectroscopy study. Nanoscale Res Lett 11(1):1. https://doi.org/10.1186/s11671-016-1352-6

    Article  Google Scholar 

  16. Klym H, Ingram A, Shpotyuk O, Hadzaman I, Chalyy D (2018) Water-sorption effects near grain boundaries in modified MgO-Al2O3 ceramics tested with positron-positronium trapping algorithm. Acta Phys Pol A 133(4):864–868. https://doi.org/10.12693/APhysPolA.133.864

    Article  Google Scholar 

  17. Klym H, Ingram A, Shpotyuk O, Hadzaman I, Solntsev V, Hotra O, Popov AI (2016) Positron annihilation characterization of free volume in micro-and macro-modified Cu0.4Co0.4Ni0.4Mn1.8O4 ceramics. Low Temp Phys 42(7):601–605. https://doi.org/10.1063/1.4959021

    Article  ADS  Google Scholar 

  18. Brunets I, Mrooz O, Shpotyuk O, Altenburg H (2004) Thick-film NTC thermistors based on spinel-type semiconducting electroceramics. 24th International Conference on Microelectronics, (MIEL) 2:503–506. https://doi.org/10.1109/ICMEL.2004.1314873

  19. Klym H, Hadzaman I, Ingram A, Shpotyuk O (2013) Multilayer thick-film structures based on spinel ceramics. Can J Phys 92(7/8):822–826. https://doi.org/10.1139/cjp-2013-0597

    Article  ADS  Google Scholar 

  20. Klym H, Hadzaman I, Shpotyuk O, Brunner M (2014) Integrated thick-film nanostructures based on spinel ceramics. Nanoscale Res Lett 9(1):149. https://doi.org/10.1186/1556-276X-9-149

    Article  ADS  Google Scholar 

  21. Klym H, Hadzaman I, Shpotyuk O, Fu Q, Luo W, Deng J (2013) Integrated thick-film pi-p+ structures based on spinel ceramics. Solid State Phenom 200:156–161. https://doi.org/10.4028/www.scientific.net/SSP.200.156

    Article  Google Scholar 

  22. Vakiv M, Hadzaman I, Klym H, Shpotyuk O, Brunner M (2011) Multifunctional thick-film structures based on spinel ceramics for environment sensors. J Phys Conf Ser 289(1):012011. https://doi.org/10.1088/1742-6596/289/1/012011

    Article  Google Scholar 

  23. Hadzaman I, Klym H, Shpotuyk O, Brunner M (2010) Temperature sensitive spinel-type ceramics in thick-film multilayer performance for environment sensors. Acta Phys Pol A 117(1):234–237. http://przyrbwn.icm.edu.pl/APP/PDF/117/a117z148.pdf

    Article  Google Scholar 

  24. Rodriguez-Carvajal J (2001) Recent developments of the program FULLPROF, commission on powder diffraction (IUCr). Newsletter 26:12–19

    Google Scholar 

  25. Roisnel T, Rodriguez-Carvajal J (2000) WinPLOTR: a windows tool for powder diffraction patterns analysis, materials, science forum. Proc. of the Seventh European Powder Diffraction Conference, Barcelona

    Google Scholar 

  26. Mrooz O, Hadzaman I, Vakiv M, Shpotyuk O, Plewa J, Altenburg H, Uphoff H (2002) Aging of copper-nickel-cobalt manganite NTC thermistors. 23rd International Conference on Microelectronics (MIEL) 1:375–378. https://doi.org/10.1109/MIEL.2002.1003215

  27. Bodak O, Akselrud L, Demchenko P, Kotur B, Mrooz O, Hadzaman I, Pekhnyo V (2002) Microstructure, crystal structure and electrical properties of Cu0.1Ni0.8Co0.2Mn1.9O4 ceramics obtained at different sintering conditions. J Alloys Compd 347(1–2):14–23. https://doi.org/10.1016/S0925-8388(02)00675-8

    Article  Google Scholar 

  28. Klym H (2017) Structural, electrical properties and degradation processes in the Cu-and Ni-enriched thick-film elements for sensor electronics. 37th International Conference on Electronics and Nanotechnology (ELNANO):178–181. https://doi.org/10.1109/ELNANO.2017.7939743

  29. Nenov T, Nenova Z (2002) Multifunctional temperature sensor. 23rd International Conference on Microelectronics (MIEL) 1:257–260. https://doi.org/10.1109/MIEL.2002.1003188

  30. Klym H, Balitska V, Shpotyuk O, Hadzaman I (2014) Degradation transformation in spinel-type functional thick-film ceramic materials. Microelectron Reliab 54(12):2843–2848. https://doi.org/10.1016/j.microrel.2014.07.137

    Article  Google Scholar 

  31. Shpotyuk O, Brunner M, Hadzaman I, Balitska V, Klym H (2016) Analytical description of degradation-relaxation transformations in nanoinhomogeneous spinel ceramics. Nanoscale Res Lett 11(1):499. https://doi.org/10.1186/s11671-016-1722-0

    Article  ADS  Google Scholar 

  32. Shpotyuk O, Kovalskiy A, Mrooz O, Shpotyuk L, Pechnyo V, Volkov S (2001) Technological modification of spinel-based CuxNi1–x–yCo2yMn2–yO4 ceramics. J Eur Ceram Soc 21(10–11):2067–2070. https://doi.org/10.1016/S0955-2219(01)00173-X

    Article  Google Scholar 

  33. De Bast J, Gilard P (1963) Variation of the viscosity of glass and relaxation of stresses during stabilization. Phys Chem Glasses 4:117–128

    Google Scholar 

  34. Klym H, Katerynchuk I (2012) High-reliable temperature systems for sensor electronics. International Conference on Modern Problems of Radio Engineering Telecommunications and Computer Science (TCSET):490. https://ieeexplore.ieee.org/abstract/document/6192728

  35. Hadzaman I, Klym H, Shpotyuk O (2014) Nanostructured oxyspinel multilayers for novel high-efficient conversion and control. Int J Nanotechnol 11(9–10-11):843–853. https://doi.org/10.1504/IJNT.2014.063793

    Article  Google Scholar 

  36. Klym H, Berezko O, Vasylchyshyn I, Kostiv Y (2018) Intelligent cyber-physical computer system and database for microclimate monitoring based on nanostructured sensors. Acta Technica CSAV 63(3):447–458

    Google Scholar 

Download references

Acknowledgments

H. Klym and Yu. Kostiv thank the Ministry of Education and Science of Ukraine for support. H. Klym thanks Prof. O. Shpotyuk for discussion.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Klym, H., Kostiv, Y., Hadzaman, I. (2019). Preparation and Complex Study of Thick Films Based on Nanostructured Cu0.1Ni0.8Co0.2Mn1.9O4 and Cu0.8Ni0.1Co0.2Mn1.9O4 Ceramics. In: Fesenko, O., Yatsenko, L. (eds) Nanocomposites, Nanostructures, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-030-17759-1_13

Download citation

Publish with us

Policies and ethics