Skip to main content

Properties of Ultrathin Lipid Layers Surrounding Boron Nitride Nanotube: Computer Simulation Study

  • Conference paper
  • First Online:
Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications (NANO 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 222))

Included in the following conference series:

  • 363 Accesses

Abstract

Computer simulation studies were used to examine the interactions between boron nitride nanotube and lipids (cholesterol and phospholipid). The nanotube was surrounded by ultrathin film formed by molecules. The studies were performed for a wide range of temperatures, beginning from 260 K up to 360 K and including physiological one. The dynamics of lipids surrounding the nanotube is discussed by analyzing observables, such as mean square displacement and diffusion coefficient. The simulations were performed in water environment and for anhydrous systems. Moreover, the comparison between heterogeneous (boron nitride) and homogeneous (carbon) nanotubes is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241. https://doi.org/10.1038/35025203

    Article  Google Scholar 

  2. Scott HL (2002) Modeling the lipid component of membranes. Curr Opin Struct Biol 12:495–502. https://doi.org/10.1016/S0959-440X(02)00353-6

    Article  Google Scholar 

  3. Feller SE (2000) Molecular dynamics simulations of lipid bilayers. Curr Opin Colloid Interface Sci 5:217–223. https://doi.org/10.1016/S1359-0294(00)00058-3

    Article  Google Scholar 

  4. Alberts B (2008) Molecular biology of the cell. Garland Science, New York. [etc.]

    Google Scholar 

  5. Sperelakis N (2012) Cell physiology sourcebook essentials of membrane biophysics. Elsevier/AP, Amsterdam/Boston

    Google Scholar 

  6. Raczynski P, Gorny K, Samios J, Gburski Z (2014) Interaction between silicon-carbide nanotube and cholesterol domain. A molecular dynamics simulation study. J Phys Chem C 118:30115–30119. https://doi.org/10.1021/jp505532f

    Article  Google Scholar 

  7. Raczynski P, Raczynska V, Gorny K, Gburski Z (2015) Properties of ultrathin cholesterol and phospholipid layers surrounding silicon-carbide nanotube: MD simulations. Arch Biochem Biophys 580:22–30. https://doi.org/10.1016/j.abb.2015.06.008

    Article  Google Scholar 

  8. Raczynski P, Dawid A, Pietek A, Gburski Z (2006) Reorienatational dynamics of cholesterol molecules in thin film surrounded carbon nanotube: molecular dynamics simulations. J Mol Struct 792–793:216–220. https://doi.org/10.1016/j.molstruc.2006.01.064

    Article  ADS  Google Scholar 

  9. Zhong J, Dai LC (2012) Targeting liposomal nanomedicine to Cancer therapy. Technol Cancer Res Treat 11:475–481. https://doi.org/10.7785/tcrt.2012.500259

    Article  Google Scholar 

  10. Ciofani G, Danti S, Genchi GG, Mazzolai B, Mattoli V (2013) Boron nitride nanotubes: biocompatibility and potential spill-over in nanomedicine. Small 9:1672–1685. https://doi.org/10.1002/smll.201201315

    Article  Google Scholar 

  11. Gorny K, Dendzik Z, Raczynski P, Gburski Z (2012) Dynamic properties of propylene glycol confined in ZSM-5 zeolite matrix-A computer simulation study. Solid State Commun 152:8–12. https://doi.org/10.1016/j.ssc.2011.10.020

    Article  ADS  Google Scholar 

  12. Raczynski P, Dawid A, Dendzik Z, Gburski Z (2005) Dielectric relaxation in water-cholesterol mixture cluster: molecular dynamics simulation. J Mol Struct 750:18–21. https://doi.org/10.1016/j.molstruc.2005.03.036

    Article  ADS  Google Scholar 

  13. Dawid A, Raczynski P, Gburski Z (2014) Depolarised Rayleigh light scattering in argon layer confined between graphite plains: MD simulation. Mol Phys 112:1645–1650. https://doi.org/10.1080/00268976.2013.853111

    Article  ADS  Google Scholar 

  14. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312. https://doi.org/10.1006/jcph.1999.6201

    Article  ADS  MATH  Google Scholar 

  15. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. https://doi.org/10.1002/jcc.20289

    Article  Google Scholar 

  16. Allen MP, Tildesley DJ (1989) Computer simulation of liquids. Clarendon Press/Oxford University Press, Oxford [England]/New York

    MATH  Google Scholar 

  17. Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    Google Scholar 

  18. Won CY, Aluru NR (2007) Water permeation through a subnanometer boron nitride nanotube. J Am Chem Soc 129:2748–274+. https://doi.org/10.1021/ja0687318

    Article  Google Scholar 

  19. Won CY, Aluru NR (2008) Structure and dynamics of water confined in a boron nitride nanotube. J Phys Chem C 112:1812–1818. https://doi.org/10.1021/jp076747u

    Article  Google Scholar 

  20. Feller SE, MacKerell AD (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104:7510–7515. https://doi.org/10.1021/jp0007843

    Article  Google Scholar 

  21. Henin J, Chipot C (2006) Hydrogen-bonding patterns of cholesterol in lipid membranes. Chem Phys Lett 425:329–335. https://doi.org/10.1016/j.cplett.2006.04.115

    Article  ADS  Google Scholar 

  22. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926. https://doi.org/10.1063/1.445869

    Article  ADS  Google Scholar 

  23. Humphrey W, Dalke A, Schulten K (1996) VMD – Visual Molecular Dynamics. J Mol Graph 14:33–38

    Article  Google Scholar 

  24. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by PAAD Infrastructure cofinanced by Operational Programme Innovative Economy, Objective 2.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemyslaw Raczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Raczynski, P. (2019). Properties of Ultrathin Lipid Layers Surrounding Boron Nitride Nanotube: Computer Simulation Study. In: Fesenko, O., Yatsenko, L. (eds) Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-030-17755-3_26

Download citation

Publish with us

Policies and ethics