Skip to main content

New Method for Rapid Digital Hologram Processing

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 222))

Abstract

In this paper, we present a new method for rapid digital hologram processing, which includes shifting the useful spectrum component to the center and compensating the curvature of the reference beam. The object recognition algorithm was proposed for automatic determination of the position of the object field component. Also, approaches with various coefficients for performing proper recognition and curvature compensation were considered. The proposed method allows reducing the digital hologram processing time and improving the accuracy of measurements with digital holographic microscopy and multiwavelength holography.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schnars U, Falldorf C, Watson J, Jüptner W (2015) Digital holography. In: Digital holography and wavefront sensing. Springer, Berlin, Heidelberg, pp 39–68

    Google Scholar 

  2. Asundi A (2011) Digital holography for MEMS and microsystem metrology, vol 7. Wiley, New York

    Book  Google Scholar 

  3. Micó V, Ferreira C, Zalevsky Z, García J (2010). Basic principles and applications of digital holographic microscopy. Microscopy: Science, Technology, Applications and Education 1411–1418

    Google Scholar 

  4. Picart P, Li JC (2013) Digital holography. Wiley, New York

    MATH  Google Scholar 

  5. Kotsiuba Y, Petrovska H, Fitio V, Bobitski Y (2017, August) Digital interferometry methods for the surface relief study. In: International conference on nanotechnology and nanomaterials. Springer, Cham, pp 207–217

    Google Scholar 

  6. Khodadad D, Bergström P, Hällstig E, Sjödahl M (2015) Fast and robust automatic calibration for single-shot dual-wavelength digital holography based on speckle displacements. Appl Opt 54(16):5003–5010

    Article  ADS  Google Scholar 

  7. Li JC, Peng ZJ, Tankam P, Song QH, Picart P (2011) Digital holographic reconstruction of a local object field using an adjustable magnification. JOSA A 28(6):1291–1296

    Article  ADS  Google Scholar 

  8. Zhang F, Yamaguchi I, Yaroslavsky LP (2004) Algorithm for reconstruction of digital holograms with adjustable magnification. Opt Lett 29(14):1668–1670

    Article  ADS  Google Scholar 

  9. Picart P, Tankam P, Mounier D, Peng ZJ, Li JC (2009) Spatial bandwidth extended reconstruction for digital color Fresnel holograms. Opt Express 17(11):9145–9156

    Article  ADS  Google Scholar 

  10. Schnars U, Jüptner WP (2002) Digital recording and numerical reconstruction of holograms. Meas Sci Technol 13(9):R85

    Article  ADS  Google Scholar 

  11. Gusev ME, Voronin AA, Gurevich VS, Isaev AM, Alexeenko IV (2012) Modern methods of registration, reconstruction and representation of results in digital holographic interferometry, 7-th international scientific-practical conference «Holography – study and practice», Moscow, 28–30 September 2010, p 83

    Google Scholar 

  12. Abramov АY, Savonin SА, Dikov ОV, Perepelnitsina ОА, Ryabukho VP (2010) Digital focused image holographic interferometry of microscopic transparent objects, collection of works of international conference «FOP-2010». Saint-Petersburg 1:272–274

    Google Scholar 

  13. Li J, Wang Z, Gao J, Liu Y, Huang J (2014) Adaptive spatial filtering based on region growing for automatic analysis in digital holographic microscopy. Opt Eng 54(3):031103

    Article  ADS  Google Scholar 

  14. Weng J, Li H, Zhang Z, Zhong J (2014) Design of adaptive spatial filter at uniform standard for automatic analysis of digital holographic microscopy. Optik-International Journal for Light and Electron Optics 125(11):2633–2637

    Article  Google Scholar 

  15. He X, Nguyen CV, Pratap M, Zheng Y, Wang Y, Nisbet DR et al (2016) Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy. Biomed Opt Express 7(8):3111–3123

    Article  Google Scholar 

  16. Gusev ME, Voronin AA, Gurevich VS, Isaev AM, Alexeenko IV, Redkorechev VI (2011) Methods of digital holographic interferometry and its application to measure nanodisplacement. Nanosystems Phys Chem Math 2(1):23–39

    Google Scholar 

  17. Khodadad D, Bergström P, Hällstig E, Sjödahl M (2014) Single shot dual-wavelength digital holography: calibration based on speckle displacements. International Journal of Optomechatronics 8(4):326–339

    Article  ADS  Google Scholar 

  18. Picart P, Montresor S, Sakharuk O, Muravsky L (2017) Refocus criterion based on maximization of the coherence factor in digital three-wavelength holographic interferometry. Opt Lett 42(2):275–278

    Article  ADS  Google Scholar 

  19. Yang Y, Kang BS, Choo YJ (2008) Application of the correlation coefficient method for determination of the focal plane to digital particle holography. Appl Opt 47(6):817–824

    Article  ADS  Google Scholar 

  20. Kotsiuba Y, Petrovska H, Fitio VM, Bulavinets T, Bobitski YV (2016, August) Optimization of the parameters of digital holographic microscope. In: International conference on nanotechnology and nanomaterials. Springer, Cham, pp 231–247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Petrovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kotsiuba, Y.M., Petrovska, H.A., Fitio, V.M., Bobitski, Y.V. (2019). New Method for Rapid Digital Hologram Processing. In: Fesenko, O., Yatsenko, L. (eds) Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-030-17755-3_11

Download citation

Publish with us

Policies and ethics