Skip to main content

On the Homogenization of Nonlinear Shell

  • Chapter
  • First Online:
Recent Developments in the Theory of Shells

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 110))

  • 560 Accesses

Abstract

In this paper we propose a multiscale finite-strain shell theory for simulating the mechanical response of highly heterogeneous shell with varying thickness. To resolve this issue a higher-order stress-resultant shell formulation based on multiscale homogenization is considered. At the macroscopic scale level, we approximate the displacement field by a fifth-order Taylor-Young expansion in thickness. We take account of the microscale fluctuations by introducing a boundary value problem over the domain of a three-dimensional representative volume element (RVE). The geometrical form and the dimensions of the RVE are determined by the representative microstructure of the heterogeneity. In this way, an in-plane homogenization is directly combined with a through thickness stress integration. As a result the macroscopic stress resultants are the volume averages through RVE of microscopic stress. All microstructural constituents are modeled as first-order continua and three-dimensional continuum, described by the standard equilibrium and the constitutive equations. This type of theory is anxiously awaited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pietraszkiewicz, W., Witkowski, J.: Shell Structures: Theory and Applications, vol. 4. CRC Press (2017)

    Google Scholar 

  2. Timoshenko, S., Woinowsky-Krieger, S., Woinowsky-Krieger, S.: Theory of Plates and Shells, vol. 2. McGraw-Hill, New-York, NY (1959)

    Google Scholar 

  3. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    Article  Google Scholar 

  4. Love, A.E.H.: The small free vibrations and deformation of a thin elastic shell. Philos. Trans. R. Soc. London A. 179, 491–546 (1888)

    Article  Google Scholar 

  5. Kirchhoff, G.: Über das gleichgewicht und die bewegung einer elastischen scheibe. Journal für die Reine und Angewandte Mathematik. 40, 51–88 (1850)

    Google Scholar 

  6. Sanders, J.L.: An improved first-approximation theory for thin shells. NASA Report 24 (1959)

    Google Scholar 

  7. Koiter, W.T.: On the nonlinear theory of thin elastic shells. Koninklijke Nederlandse Akademie van Wetenschappen. Proc. Ser. B. 69(1), 1–54 (1966)

    Google Scholar 

  8. Gol’denveizer, A.: Derivation of an approximate theory of shells by means of asymptotic integration of the equations of the theory of elasticity. J. Appl. Math. Mech. 27(4), 903–924 (1963)

    Article  Google Scholar 

  9. Ciarlet, P.G., Destuynder, P.: A justification of a nonlinear model in plate theory. Comput. Methods Appl. Mech. Eng. 17, 227–258 (1979)

    Article  Google Scholar 

  10. Ciarlet, P.G., Destuynder, P.: Justification of the 2-dimensional linear plate model. J. Mécanique. 18(2), 315–344 (1979)

    Google Scholar 

  11. Destuynder, P.: Sur une Justification des Modeles de Plaques et de Coques par les Methodes Asymptotiques. Universite Pierre et Marie Curie, Paris Ph.D. thesis, 1980

    Google Scholar 

  12. Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Rat. Mech. Anal. 180, 183–236 (2006)

    Article  Google Scholar 

  13. Le Dret, H., Raoult, A.: The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci. 6(1), 59–84 (1996)

    Article  Google Scholar 

  14. Pruchnicki, E.: Nonlinearly elastic membrane model for heterogeneous shells by using a new double scale variational formulation: a formal asymptotic approach. J. Elast. 84(3), 245–280 (2006)

    Article  Google Scholar 

  15. Reddy, J., Liu, C.: A higher-order shear deformation theory of laminated elastic shells. Int. J. Eng. Sci. 23(3), 319–330 (1985)

    Article  Google Scholar 

  16. Reddy, J., Arciniega, R.: Shear deformation plate and shell theories: from stavsky to present. Mech. Adv. Mater. Struct. 11(6), 535–582 (2004)

    Article  Google Scholar 

  17. Meroueh, K.: On a formulation of a nonlinear theory of plates and shells with applications. Comput. Struct. 24(5), 691–705 (1986)

    Article  Google Scholar 

  18. Steigmann, D.J.: Two-dimensional models for the combined bending and stretching of plates and shells based on three-dimensional linear elasticity. Int. J. Eng. Sci. 46(7), 654–676 (2008)

    Article  Google Scholar 

  19. Steigmann, D.J.: Extension of koiter’s linear shell theory to materials exhibiting arbitrary symmetry. Int. J. Eng. Sci. 51, 216–232 (2012)

    Article  Google Scholar 

  20. Pruchnicki, E.: Two-dimensional model of order h5 for the combined bending, stretching, transverse shearing and transverse normal stress effect of homogeneous plates derived from three-dimensional elasticity. Math. Mech. Solids. 19(5), 477–490 (2014)

    Article  Google Scholar 

  21. Pruchnicki, E.: A fifth-order model for shells which combines bending, stretching and transverse shearing deduced from three-dimensional elasticity. Math. Mech. Solids. 21(7), 842–855 (2016)

    Article  Google Scholar 

  22. Song, Z., Dai, H.H.: On a consistent finite-strain shell theory based on 3-D nonlinear elasticity. Int. J. Solids Struct. 22(12), 1557–1570 (2016)

    Google Scholar 

  23. Williams, T.O.: A new theoretical framework for the formulation of general, nonlinear, multiscale plate theories. Int. J. Solids Struct. 45, 2534–2560 (2008)

    Article  Google Scholar 

  24. Williams, T.O.: A new, unified, theoretical framework for the formulation of general, nonlinear, single-scale shell theories. Compos. Struct. 107, 544–558 (2014)

    Article  Google Scholar 

  25. Carrera, E.: Theories and finite elements for multilayered, anisotropic, composite plates and shells. Arch. Comput. Methods Eng. 9(2), 87–140 (2002)

    Article  Google Scholar 

  26. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis (2nd edn). CRC Press, London, L (2004)

    Book  Google Scholar 

  27. Lewinski,T., Telega, J. J.: Plates, Laminates and Shells: Asymptotic Analysis and Homogenization. World Scientific, Singapore, New Jersey, London, Hong-Kong, S, N-J, L, H-K (2000)

    Google Scholar 

  28. Hohe, J., Becker, W.: Effective stress–strain relations for two dimensional cellular sandwich cores: homogenization, material models, and properties. Appl. Mech. Rev. 55, 61–87 (2002)

    Article  Google Scholar 

  29. Gruttmann, F., Wagner, W.: A coupled two-scale shell model with applications to layered structures. Int. J. Numer. Meth. Engng. 94, 1233–1254 (2013)

    Article  Google Scholar 

  30. Heller, D., Gruttmann, F.: Nonlinear two-scale shell modeling of sandwiches with a comb-like core. Compos. Struct. 144, 147–155 (2016)

    Article  Google Scholar 

  31. Gruttmann, F., Knust, G., Wagner, W.: Theory and numerics of layered shells with variationally embedded interlaminar stresses. Comput. Methods Appl. Mech. Eng. 326, 713–738 (2017)

    Article  Google Scholar 

  32. Cecchi, A., Sab, K.: Out-of-plane model for heterogeneous periodic materials: the case of masonry. Eur. J. Mech. Solids. 21, 715–746 (2002)

    Article  Google Scholar 

  33. Cecchi, A., Milani, G., Tralli, A.: A Reissner-Mindlin limit analysis model for out-of- plane loaded running bond masonry walls. Int. J. Solids and Struct. 44, 1438–1460 (2007)

    Article  Google Scholar 

  34. Mistler, M., Anthoine, A., Butenweg, C.: In-plane and out-of-plane homogenization of masonry. Comput. Struct. 85, 1321–1330 (2007)

    Article  Google Scholar 

  35. Mercatoris, B.C.N., Bouillard, P., Massart, T.J.: Multi-scale detection of failure in planar masonry thin shells using computational homogenization. Eng. Fract. Mech. 76, 479–499 (2009)

    Article  Google Scholar 

  36. Petracca, M., Pela, L., Rossi, R., Oller, S., Guido Camata, G., Spacone, E.: Multiscale computational first order homogenization of thick shells for the analysis of out-of-plane loaded masonry walls. Comput. Methods Appl. Mech. Engrg. 315, 273–301 (2017)

    Article  Google Scholar 

  37. Caillerie, D.: Thin elastic and periodic plates. Math. Models Methods Appl. Sci. 6, 159–191 (1984)

    Article  Google Scholar 

  38. Kohn, R.V., Vogelius, M.: A new model for thin plates with rapidly varying thickness. Int. J. Solids Struct. 20, 333–350 (1984)

    Article  Google Scholar 

  39. Pruchnicki, E.: Homogenization of a second order plate model. Math. Mech. Solids. (2017). https://doi.org/10.1177/1081286517719939

    Article  Google Scholar 

  40. Geers, M.G.D., Coenen, E.W., Kouznetsova, V.G.: Multi-scale computational homogenization of structured thin sheets. Model. Simul. Mater. Sci. Eng. 15, S393–S404 (2007)

    Article  Google Scholar 

  41. Coenen, E.W.C., Kouznetsova, V.G., Geers, M.G.D.: Computational homogenization for heterogeneous thin sheets. Int. J. Numer. Methods Eng. 83, 1180–1205 (2010)

    Article  Google Scholar 

  42. Kouznetsova, V.G., Geers, M.G.D., Brekelmans, W.A.A.: Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int. J. Numer. Methods Engrg. 54, 1235–1260 (2002)

    Article  Google Scholar 

  43. Larsson, R., Diebels, S.: A second-order homogenization procedure for multi- scale analysis based on micropolar kinematics. Int. J. Numer. Methods Engrg. 69, 2485–2512 (2007)

    Article  Google Scholar 

  44. Suquet, P.M.: Local and global aspects in the mathematical theory of plasticity. In: Sawczuk, A., Bianchi, G. (eds.), Plasticity Today: Modelling, Methods and Applications, pp. 279–310. Elsevier Applied Science Publishers, London (1985)

    Google Scholar 

  45. Miehe, C., Schröder, J., Schotte, J.: Computational homogenization analysis in finite plasticity. Simulation of texture development in poly-crystalline materials. Comput. Methods Appl. Mech. Eng. 171, 387–418 (1999)

    Article  Google Scholar 

  46. Grytz, R., Meschke, G.: Consistent micro–macro transitions at large objective strains in curvilinear convective coordinates. Int. J. Numer. Methods Eng. 73, 805–824 (2008)

    Article  Google Scholar 

  47. Larsson, R., Landervik, M.: A stress-resultant shell theory based on multiscale homogenization. Comput. Methods Appl. Mech. Eng. 263, 1–11 (2013)

    Article  Google Scholar 

  48. Lee, C.Y., Yu, W., Hodges, D.H.: Refined modeling of composite plates with in-plane heterogeneity. Z. Angew. Math. Mech. 94(1–2), 85–100 (2014)

    Article  Google Scholar 

  49. Berdichevsky, V.: Variational-asymptotic method of constructing a theory of shells. J. Appl. Math. Mechanics. 43(4), 664–687 (1979)

    Article  Google Scholar 

  50. Sutyrin, V.: Derivation of plate theory accounting asymptotically correct shear deformation. J. Appl. Mech. 64, 905–915 (1997)

    Article  CAS  Google Scholar 

  51. Smit, R.J.M., Brekelmans, W.A.M., Meijer, H.E.H.: Prediction of the mechanical behaviour of non-linear heterogeneous systems by multi-level finite element modeling. Comput. Methods Appl. Mech. Eng. 155, 181–192 (1998)

    Article  Google Scholar 

  52. Feyel, F., Chaboche, J.L.: FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fiber SiC/Ti composite materials. Comput. Methods Appl. Mech. Eng. 183, 309–330 (2000)

    Article  Google Scholar 

  53. Terada, K., Kikuchi, N.: A class of general algorithms for multi-scale analysis of heterogeneous media. Comput. Methods Appl. Mech. Eng. 190, 5427–5464 (2001)

    Article  Google Scholar 

  54. Sfantos, G.K., Aliabadi, M.H.: Multi-scale boundary element modelling of material degradation and fracture. Comput. Methods Appl. Mech. Eng. 196, 1310–1329 (2007)

    Article  Google Scholar 

  55. Ghosh, S., Lee, K., Moorthy, S.: Multiple scale analysis of heterogeneous elastic structures using homogenisation theory and Voronoi cell finite element method. Int. J. Solids Struct. 32(1), 27–62 (1995)

    Article  Google Scholar 

  56. Ghosh, S., Lee, K., Moorthy, S.: Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenisation and Voronoi cell finite element model. Comput. Methods Appl. Mech. Eng. 132, 63–116 (1996)

    Article  Google Scholar 

  57. Miehe, C., Schroder, J., Schotte, J.: Computational homogenization analysis in finite plasticity, simulation of texture development in polycrystalline materials. Comput. Methods Appl. Mech. Eng. 171, 387–418 (1999)

    Article  Google Scholar 

  58. Miehe, C., Schotte, J., Schroder, J.: Computational micro–macro transitions and overall moduli in the analysis of polycrystals at large strains. Comput. Mater. Sci. 16, 372–382 (1999)

    Article  Google Scholar 

  59. Pruchnicki, E.: Homogenized nonlinear constitutive law using Fourier series expansion. Int. J. Solids and Struct. 35(16), 1895–1913 (1998)

    Article  Google Scholar 

  60. Michel, J.C., Moulinec, H., Suquet, P.: Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods. Appl. Mech. Eng. 172, 109–143 (1999)

    Article  Google Scholar 

  61. Moulinec, H., Suquet, P.: A numerical method for computing the overall response of non-linear composites with complex microstructure. Comput. Methods. Appl. Mech. Eng. 157, 69–94 (1998)

    Article  Google Scholar 

  62. Oskay, C., Fish, J.: Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Comput. Methods. Appl. Mech. Eng. 196, 1216–1243 (2007)

    Article  Google Scholar 

  63. Dai, H.H., Song, Z.: On a consistent finite-strain plate theory based on three-dimensional energy principle. Proc. R. Soc. London A. 470, 20140494 (2014)

    Article  Google Scholar 

  64. Cong, Y., Nezamabadi, S., Zahrouni, H., Yvonnet, J.: Multiscale computational homogenization of heterogeneous shells at small strains with extensions to finite displacements and buckling. Int. J. Numer. Meth. Eng. 104, 235–259 (2015)

    Article  Google Scholar 

  65. Buechter, N., Ramm, E.: Shell theory versus degeneration—a comparison in large rotation finite element analysis. Internat. J. Numer. Methods Eng. 34, 39–59 (1992)

    Article  Google Scholar 

  66. Sansour, C.: A theory and finite element formulation of shells at finite deformations involving thickness change: circumventing the use of a rotation tensor. Arch. Appl. Mech. 65, 194–216 (1995)

    Article  Google Scholar 

  67. Buechter, N., Ramm, E., Roehl, D.: Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Internat. J. Numer. Methods Eng. 34, 2551–2568 (1994)

    Article  Google Scholar 

  68. Roehl, D., Ramm, E.: Large elasto-plastic finite element analysis of solids and shells with the enhanced assumed strain concept. Int. J. Solids Struct. 33, 3215–3237 (1996)

    Article  Google Scholar 

  69. Helfen, C.E., Diebels, S.: A numerical homogenisation method for sandwich plates based on a plate theory with thickness change. Z. Angew. Math. Mech. 93(2–3), 113–125 (2013)

    Article  Google Scholar 

  70. Helfen, C.E., Diebels, S.: Computational homogenisation of composite plates: consideration of the thickness change with a modified projection strategy. Comput. Math Appl. 67, 1116–1129 (2014)

    Article  Google Scholar 

  71. Fillep, S., Mergheim, J., Steinmann, P.: Computational modelling and homogenization of technical textiles. Eng. Struct. 50, 68–73 (2013)

    Article  Google Scholar 

  72. Fillep, S., Mergheim, J., Steinmann, P.: Towards an efficient two-scale approach to model technical textiles. Comput. Mech. 59, 385–401 (2017)

    Article  Google Scholar 

  73. Naghdi, P.M.: Theory of shells and plates. In: Truesdell, C. (ed.) Handbuch der Physik, vol. VIa/2, pp. 425–640. Springer, Berlin (1972)

    Google Scholar 

  74. Dikmen, M.: Theory of thin elastic shells. Pitman, London (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick Pruchnicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pruchnicki, E. (2019). On the Homogenization of Nonlinear Shell. In: Altenbach, H., Chróścielewski, J., Eremeyev, V., Wiśniewski, K. (eds) Recent Developments in the Theory of Shells . Advanced Structured Materials, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-17747-8_27

Download citation

Publish with us

Policies and ethics