Skip to main content

Development of Invariant-Based Triangular Element for Nonlinear Thermoelastic Analysis of Laminated Shells

  • Chapter
  • First Online:
Recent Developments in the Theory of Shells

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 110))

  • 542 Accesses

Abstract

A finite element formulation is proposed for geometrically nonlinear analysis of thermally loaded composite laminated shells taking into account temperature-dependent properties of the material. The laminated shell is modeled by an equivalent single layer under the assumptions of the first-order shear deformation theory. A three-node triangular element is formulated using three natural coordinates directed along the element sides. The study focuses on representation of the total potential thermoelastic energy of anisotropic shell in terms of combined invariants which depend on the natural components of the strain tensor and those of the tensors describing mechanical and physical properties of the material. Based on the resulting expression for the energy, compact and algorithmic relations are derived for computing coefficients of the first and second variations of the strain energy of the finite element which are necessary to formulate the equations for finding equilibrium states and to examine their stability. Some examples are presented to demonstrate the ability of the finite element to deal with postbuckling behavior of thermally loaded laminated shells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, L.W., Chen, L.Y.: Thermal buckling behavior of laminated composite plates with temperature-dependent properties. Compos. Struct. 13(4), 275–287 (1989)

    Article  Google Scholar 

  2. Thangaratnam, R.K., Palaninathan, R., Ramachandran, J.: Thermal buckling of laminated composite shells. AIAA J. 28(5), 859–860 (1990)

    Article  Google Scholar 

  3. Thangaratnam, K.R., Palaninathan, R.J.: Thermal buckling of composite laminated plates. Comput. Struct. 32(5), 1117–1124 (1989)

    Article  Google Scholar 

  4. Ounis, H., Tati, A., Benchabane, A.: Thermal buckling behavior of laminated composite plates: a finite-element study. Front. Mech. Eng. 9(1), 41–49 (2014). https://doi.org/10.1007/s11465-014-0284-z

    Article  Google Scholar 

  5. Chandrashekhara, K.: Thermal buckling of laminated plates using a shear flexible finite element. Finite Elem. Anal. Des. 12, 51–61 (1992)

    Article  Google Scholar 

  6. Prabhu, M.R., Dhanaraj, R.: Thermal buckling of laminated composite plates. Comput. Struct. 53(5), 1193–1204 (1994)

    Article  Google Scholar 

  7. Dawe, D.J., Ge, Y.S.: Thermal buckling of shear-deformable composite laminated plates by the spline finite strip method. Comput. Meth. Appl. Mech. Eng. 185, 347–366 (2000)

    Article  Google Scholar 

  8. Kabir, H.R.H., Askar, H., Chaudhuri, R.A.: Thermal buckling response of shear flexible laminated anisotropic plates using a three-node isoparametric element. Compos. Struct. 59(2), 173–187 (2003)

    Article  Google Scholar 

  9. Shiau, L.C., Kuo, S.Y., Chen, C.Y.: Thermal buckling behavior of composite laminated plates. Compos. Struct. 92(2), 508–514 (2010)

    Article  Google Scholar 

  10. Argyris, J., Tenek, L.: High-temperature bending, buckling, and postbuckling of laminated composite plates using the natural mode method. Comput. Methods Appl. Mech. Engrg. 117, 105–142 (1994)

    Article  Google Scholar 

  11. Ganapathi, M., Touratier, M.: A study on thermal postbuckling behaviour of laminated composite plates using a shear-flexible finite element. Finite Elem. Anal. Des. 28, 115–135 (1997)

    Article  Google Scholar 

  12. Huang, N.N., Tauchert, T.R.: Large deflections of laminated cylindrical and doubly-curved panels under thermal loading. Comput. Struct. 41(2), 303–312 (1991)

    Article  Google Scholar 

  13. Huang, N.N., Tauchert, T.R.: Thermal buckling of clamped symmetric laminated plates. Thin-Walled Struct. 13, 259–273 (1992)

    Article  Google Scholar 

  14. Barut, A., Madenci, E., Tessler, A.: Nonlinear thermoelastic analysis of composite panels under non-uniform temperature distribution. Int. J. Solids Struct. 37, 3681–3713 (2000)

    Article  Google Scholar 

  15. Patel, B.P., Shukla, K.K., Nath, Y.: Nonlinear thermoelastic stability characteristics of cross-ply laminated oval cylindrical/conical shells. Finite Elem. Anal. Des. 42, 1061–1070 (2006)

    Article  Google Scholar 

  16. Alijani, A., Darvizeh, M., Darvizeh, A., Ansari, R.: On nonlinear thermal buckling analysis of cylindrical shells. Thin-Walled Struct. 95, 170–182 (2015)

    Article  Google Scholar 

  17. Sabik, A., Kreja, I.: Large thermo-elastic displacement and stability FEM analysis of multilayered plates and shells. Thin-Walled Struct. 71, 119–133 (2013)

    Article  Google Scholar 

  18. Sabik, A., Kreja, I.: Thermo-elastic non-linear analysis of multilayered plates and shells. Compos. Struct. 130, 37–43 (2015)

    Article  Google Scholar 

  19. Kant, T., Babu, C.S.: Thermal buckling analysis of skew fiber-reinforced composite and sandwich plates using shear deformable finite element models. Compos. Struct. 49, 77–85 (2000)

    Article  Google Scholar 

  20. Patel, B.P., Shukla, K.K., Nath, Y.: Thermal buckling of laminated cross-ply oval cylindrical shells. Compos. Struct. 65, 217–229 (2004)

    Article  Google Scholar 

  21. Cetkovic, M.: Thermal buckling of laminated composite plates using layerwise displacement model. Compos. Struct. 142, 238–253 (2016)

    Article  Google Scholar 

  22. Oh, I.-K., Lee, I.: Thermal snapping and vibration characteristics of cylindrical composite panels using layerwise theory. Compos. Struct. 51, 49–61 (2001)

    Article  Google Scholar 

  23. Chen, L.W., Chen, L.Y.: Thermal postbuckling behaviors of laminated composite plates with temperature-dependent properties. Compos. Struct. 19, 267–283 (1991)

    Article  Google Scholar 

  24. Singha, M.K., Ramamachandra, L.S., Bandyopadhyay, J.N.: Thermal postbuckling analysis of laminated composite plates. Compos. Struct. 54, 453–458 (2001)

    Article  Google Scholar 

  25. Srikanth, G., Kumar, A.: Postbuckling response and failure of symmetric laminates under uniform temperature rise. Compos. Struct. 59, 109–118 (2003)

    Article  Google Scholar 

  26. Chandrashekhara, K., Bhimaraddi, A.: Thermal stress analysis of laminated doubly curved shells using a shear flexible finite element. Compute. Struct. 52(5), 1023–1030 (1994)

    Article  Google Scholar 

  27. Patel, B.P., Shukla, K.K., Nath, Y.: Thermal postbuckling characteristics of laminated conical shells with temperature-dependent material properties. AIAA J. 43(6), 1380–1388 (2005)

    Article  Google Scholar 

  28. Patel, B.P., Shukla, K.K., Nath, Y.: Thermal postbuckling analysis of laminated cross-ply truncated circular conical shells. Compos. Struct. 71, 101–114 (2005)

    Article  Google Scholar 

  29. Shariyat, M.: Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layerwise theory. Thin-Walled Struct. 45, 439–452 (2007)

    Article  Google Scholar 

  30. Argyris, J.H., Dunne, P.C., Malejannakis, G.A., Schelkle, E.: A simple triangular facet shell element with applications to linear and non-linear equilibrium and elastic stability problems. Comput. Methods Appl. Mech. Engrg. 10, 371–403 (1977)

    Article  Google Scholar 

  31. Argyris, J., Tenek, L.: Linear and geometrically nonlinear bending of isotropic and multilayered composite plates by the natural mode method. Comput. Methods Appl. Mech. Engrg. 113, 207–251 (1994)

    Article  Google Scholar 

  32. Argyris, J., Tenek, L., Olofsson, L.: TRIC: a simple but sophisticated 3-node triangular element based on 6 rigid-body and 12 straining modes for fast computational simulations of arbitrary isotropic and laminated composite shells. Comput. Methods Appl. Mech. Engrg. 145, 11–85 (1997)

    Article  Google Scholar 

  33. Kuznetsov, V.V., Levyakov, S.V.: Geometrically nonlinear shell finite element based on the geometry of a planar curve. Finite Elem. Anal. Des. 44, 450–461 (2008)

    Article  Google Scholar 

  34. Kuznetsov, V.V., Levyakov, S.V.: Phenomenological invariants and their application to geometrically nonlinear formulation of triangular finite elements of shear deformable shells. Int. J. Solids Struct. 46, 1019–1032 (2009)

    Article  Google Scholar 

  35. Kuznetsov, V.V., Levyakov, S.V.: Nonlinear stability analysis of functionally graded shells using the invariant-based triangular finite element. ZAMM Z. Angew. Math. Mech. 94(1–2), 101–117 (2013). https://doi.org/10.1002/zamm.201200188

    Article  Google Scholar 

  36. Levyakov, S.V., Kuznetsov, V.V.: Complete system of two-dimensional invariants for formulation of triangular finite element of composite shells. Appl. Math. Model. 36, 5183–5198 (2012)

    Article  Google Scholar 

  37. Levyakov, S.V., Kuznetsov, V.V.: Invariant-based formulation of a triangular finite element for geometrically nonlinear thermal analysis of composite shells. Compos. Struct. 177, 38–53 (2017)

    Article  Google Scholar 

  38. Segerlind, L.J.: Applied Finite Element Analysis. Wiley (1984)

    Google Scholar 

  39. Yang, Y.-B., Shieh, M.-S.: Solution method for nonlinear problems with multiple critical points. AIAA J. 28(12), 2110–2116 (1990)

    Article  Google Scholar 

  40. Shen, H.S.: Thermal postbuckling behavior of imperfect shear deformable laminated plates with temperature-dependent properties. Comp. Meth. Appl. Mech. Eng. 190, 5377–5390 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav V. Levyakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Levyakov, S.V. (2019). Development of Invariant-Based Triangular Element for Nonlinear Thermoelastic Analysis of Laminated Shells. In: Altenbach, H., Chróścielewski, J., Eremeyev, V., Wiśniewski, K. (eds) Recent Developments in the Theory of Shells . Advanced Structured Materials, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-17747-8_22

Download citation

Publish with us

Policies and ethics