Skip to main content

On Optimal Archgrids

  • Chapter
  • First Online:
Recent Developments in the Theory of Shells

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 110))

Abstract

The aim of the paper is twofold. The first part deals with the optimum design of fully stressed planar funiculars of least volume. The problem turns out to be reducible either to a transverse shear force based minimization problem or to a displacement based maximization problem. In the second part of the paper a proof is given that the similar optimum design problem of archgrids proposed by W. Prager and G.I.N. Rozvany in 1970s can be reduced to two mutually dual problems expressed in terms of a vector stress field or in terms of scalar displacements. The both formulations are new and deliver the tools for the setting and solving the problem of optimal archgrids effectively. The method is illustrated by the example concerning the optimal roof over a square domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chróƛcielewski, J., Makowski, J., Pietraszkiewicz, W.: Statics and Dynamics of Multifolded Shells. The Nonlinear Theory and the Finite Element Method, IPPT PAN, Warsaw (In Polish) (2004)

    Google Scholar 

  2. Czarnecki, S.: Isotropic material design. Comput. Meth Sci. Technol. 21, 49–64 (2015)

    Article  Google Scholar 

  3. Czarnecki, S., LewiƄski, T.: A stress-based formulation of the free material design problem with the trace constraint and single loading condition. Bull. Pol. Acad. Sci. Tech. Sci. 60(2), 191–204 (2012)

    Google Scholar 

  4. Czarnecki, S., LewiƄski, T.: A stress-based formulation of the free material design problem with the trace constraint and multiple load conditions. Struct. Multidiscip. Optim. 49(5), 707–731 (2014)

    Article  Google Scholar 

  5. Czarnecki, S., LewiƄski, T.: The free material design in linear elasticity. In: Rozvany, G.I.N., LewiƄski, T. (eds.) Topology Optimization in Structural and Continuum Mechanics. CISM International Centre for Mechanical Sciences. Courses and Lectures, vol. 549, pp. 213–257. Springer, Wien, Heidelberg, New York, Dordrecht London, CISM, Udine (2014)

    Chapter  Google Scholar 

  6. Czarnecki, S., LewiƄski, T.: On material design by the optimal choice of Young’s modulus distribution. Int. J. Solids Struct. 110–111, 315–331 (2017)

    Article  Google Scholar 

  7. Czarnecki, S., LewiƄski, T.: Pareto optimal design of non-homogeneous isotropic material properties for the multiple loading conditions. Phys. Status Solidi B Basic Solids State Phys. 254(1600821), 1–14 (2017)

    Article  Google Scholar 

  8. Czarnecki, S., Wawruch, P.: The emergence of auxetic material as a result of optimal isotropic design. Phys. Status Solidi B 252, 1–11 (2015)

    Article  Google Scholar 

  9. Czubacki, R., LewiƄski, T.: Topology optimization of spatial continuum structures made of non-homogeneous material of cubic symmetry. J. Mech. Mater. Struct. 10(4), 519–535 (2015)

    Article  Google Scholar 

  10. Darwich, W., Gilbert, M., Tyas, A.: Optimum structure to carry a uniform load between pinned supports. Struct. Multidiscip. Optim. 42, 33–42 (2010)

    Article  Google Scholar 

  11. Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer-Verlag, Berlin (1976)

    Book  Google Scholar 

  12. DzierĆŒanowski, G., LewiƄski, T.: Young’s modulus control in material and topology optimization. In: Schumacher, A., Vietor, Th., Fiebig, S., Bletzinger, K.-U., Maute, K. (eds.) Advances in Structural and Multidisciplinary Optimization. Proceedings of the 12th World Congress of Structural and Multidisciplinary Optimization (WCSMO12), pp 1374–1385. Springer International Publishing AG, Cham (2018)

    Google Scholar 

  13. Fuchs, M.B., Moses, E.: Optimal structural topologies with transmissible loads. Struct. Multidiscip. Optim. 19, 263–273 (2000)

    Article  Google Scholar 

  14. HetmaƄski, K., LewiƄski, T.: Forming the frames and arches which do not undergo bending. In: Szczeƛniak, W. (ed.) Theoretical Foundations of Civil Engineering-XV. Proceedings of Polish-Ukrainian-Lithuanian Transactions, pp. 231–246. Oficyna Wydawnicza PW, Warszawa (2007). (in Polish)

    Google Scholar 

  15. Jiang, Y., Zegard, T., Baker, W.F., Paulino, G.H.: Form finding of grid-shells using the ground structure and potential energy methods: a comparative study and assessment. Struct. Multidiscip. Optim. 57, 1187–1211 (2018)

    Article  Google Scholar 

  16. LewiƄski, T., SokóƂ, T.: On plane funicular structures. In: KamiƄski, M., ObrÈ©bski, J.B. (eds.) Lightweight Structures in Civil Engineering. Contemporary problems. International Seminar of IASS Polish Chapters. ƁódĆș December 2, 2011, JBO MP Wydawnictwo Naukowe, pp. 78–82 (2011)

    Google Scholar 

  17. LewiƄski, T., SokóƂ, T., Graczykowski, C.: Michell Structures. Springer, Cham (2019)

    Book  Google Scholar 

  18. Rozvany, G.I.N.: Structural Design via Optimality Criteria. Kluwer Academic Publishers, Dordrecht, The Netherlands (1989)

    Book  Google Scholar 

  19. Rozvany, G.I.N., Nakamura, H., Kuhnell, B.T.: Optimal archgrids: allowance for self-weight. Comput. Meth. Appl. Mech. Eng. 24, 287–304 (1980)

    Article  Google Scholar 

  20. Rozvany, G.I.N., Prager, W.: A new class of structural optimization problems: optimal archgrids. Comput. Meth. Appl. Mech. Eng. 19, 127–150 (1979)

    Article  Google Scholar 

  21. Rozvany, G.I.N., Wang, C.-M., Dow, M.: Prager-structures: archgrids and cable networks of optimal layout. Comput. Meth. Appl. Mech. Eng. 31, 91–113 (1982)

    Article  Google Scholar 

  22. Rozvany, G.I.N., Wang, C.-M.: On plane Prager-structures- I. Int. J. Mech. Sci. 25, 519–527 (1983)

    Article  Google Scholar 

  23. Wang, C.-M., Rozvany, G.I.N.: On plane Prager-structures- II. Non-parallel external loads and allowances for selfweight. Int. J. Mech. Sci. 25, 529–541 (1983)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. LewiƄski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Czubacki, R., LewiƄski, T. (2019). On Optimal Archgrids. In: Altenbach, H., Chróƛcielewski, J., Eremeyev, V., Wiƛniewski, K. (eds) Recent Developments in the Theory of Shells . Advanced Structured Materials, vol 110. Springer, Cham. https://doi.org/10.1007/978-3-030-17747-8_12

Download citation

Publish with us

Policies and ethics