Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 392 Accesses

Abstract

This chapter presents a comprehensive literature review on congestion control for WSNs and 6LoWPAN networks. \(\bullet \) It gives a review of performance metrics, operating systems and simulators used to evaluate and test proposed congestion control mechanisms as well as explaining which operating systems and simulators support the 6LoWPAN protocol stack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ghaffari A (2015) Congestion control mechanisms in wireless sensor networks: a survey. J Netw Comput Appl 52:101–115

    Article  Google Scholar 

  2. Kafi MA, Djenouri D, Ben-Othman J, Badache N (2014) Congestion control protocols in wireless sensor networks: a survey. IEEE Commun Surv Tutor 16(3):1369–1390

    Article  Google Scholar 

  3. Flora DJ, Kavitha V, Muthuselvi M (2011) A survey on congestion control techniques in wireless sensor networks. In: Proceedings of international conference on emerging trends in electrical and computer technology (ICETECT). IEEE, pp 1146–1149

    Google Scholar 

  4. Yuan H, Yugang N, Fenghao G (2014) Congestion control for wireless sensor networks: a survey. In: Proceedings of the 26th Chinese control and decision conference (2014 CCDC). IEEE, pp 4853–4858

    Google Scholar 

  5. Pant N, Singh M, Kumar P (2014) Traffic and resource based methods for congestion control in wireless sensor networks: a comparative analysis. In: Proceedings of 6th international conference on adaptive science and technology (ICAST). IEEE, pp 1–6

    Google Scholar 

  6. Zhao J, Wang L, Li S, Liu X, Yuan Z, Gao Z (2010) A survey of congestion control mechanisms in wireless sensor networks. In: Proceedings of 6th international conference on intelligent information hiding and multimedia signal processing (IIH-MSP). IEEE, pp 719–722

    Google Scholar 

  7. Gowthaman P, Chakravarthi R (2013) Survey on various congestion detection and control protocols in wireless sensor networks. Int J Adv Comput Eng Commun Technol (IJACECT) 2(4):15–19

    Google Scholar 

  8. Chakravarthi R, Gomathy C, Sebastian SK, Pushparaj K, Mon VB (2010) A survey on congestion control in wireless sensor networks. Int J Comput Sci Commun 1(1):161–164

    Google Scholar 

  9. Budhwar P (2015) A survey of transport layer protocols for wireless sensor networks. J Emerg Technol Innov Res (JETIR) 2:985–991

    Google Scholar 

  10. Sergiou C, Antoniou P, Vassiliou V (2014) A comprehensive survey of congestion control protocols in wireless sensor networks. IEEE Commun Surv Tutor 16(4):1839–1859

    Article  Google Scholar 

  11. Han Z, Niyato D, Saad W, Başar T, Hjørungnes A (2012) Game theory in wireless and communication networks: theory, models, and applications. Cambridge University Press, Cambridge

    Google Scholar 

  12. Matsumoto A, Szidarovszky F (2016) Game theory and its applications. Springer, Berlin

    Book  Google Scholar 

  13. Tzeng G-H, Huang J-J (2011) Multiple attribute decision making: methods and applications. CRC Press, Boca Raton

    Google Scholar 

  14. Kuo Y, Yang T, Huang G-W (2008) The use of grey relational analysis in solving multiple attribute decision-making problems. Comput Ind Eng 55(1):80–93

    Article  Google Scholar 

  15. Kelly FP, Maulloo AK, Tan DK (1998) Rate control for communication networks: shadow prices, proportional fairness and stability. J Oper Res Soc 49(3):237–252

    Article  Google Scholar 

  16. Tychogiorgos G, Leung KK (2014) Optimization-based resource allocation in communication networks. Comput Netw 66:32–45

    Article  Google Scholar 

  17. Wang L, Kuo G-S (2013) Mathematical modeling for network selection in heterogeneous wireless networks—a tutorial. IEEE Commun Surv Tutor 15(1):271–292

    Article  Google Scholar 

  18. Srikant R, Ying L (2013) Communication networks: an optimization, control, and stochastic networks perspective. Cambridge University Press, Cambridge

    Google Scholar 

  19. Yinbiao S et al (2014) Internet of things: wireless sensor networks. White paper. International Electrotechnical Commission (IEC)

    Google Scholar 

  20. Reena P, Jacob L (2007) Hop-by-hop versus end-to-end congestion control in wireless multi-hop UWB networks. In: Proceedings of international conference on advanced computing and communications (ADCOM 2007). IEEE, pp 255–261

    Google Scholar 

  21. Heimlicher S, Nuggehalli P, May M (2007) End-to-end vs. hop-by-hop transport. SIGMETRICS Perform Eval Rev 35(3):59–60

    Article  Google Scholar 

  22. Heimlicher S, Karaliopoulos M, Levy H, May M (2007) End-to-end vs. hop-by-hop transport under intermittent connectivity. In: Proceedings of the 1st international conference on autonomic computing and communication systems. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), p 20

    Google Scholar 

  23. Kafi MA, Djenouri D, Othman JB, Ouadjaout A, Badache N (2014) Congestion detection strategies in wireless sensor networks: a comparative study with testbed experiments. Procedia Comput Sci 37:168–175

    Article  Google Scholar 

  24. Yin X, Zhou X, Huang R, Fang Y, Li S (2009) A fairness-aware congestion control scheme in wireless sensor networks. IEEE Trans Veh Technol 58(9):5225–5234

    Article  Google Scholar 

  25. Wan C-Y, Eisenman SB, Campbell AT (2003) CODA: congestion detection and avoidance in sensor networks. In: Proceedings of the 1st international conference on embedded networked sensor systems. ACM, pp 266–279

    Google Scholar 

  26. Sankarasubramaniam Y, Akan ÖB, Akyildiz IF (2003) ESRT: event-to-sink reliable transport in wireless sensor networks. In: Proceedings of the 4th ACM international symposium on mobile ad hoc networking and computing. ACM, pp 177–188

    Google Scholar 

  27. Michopoulos V, Guan L, Oikonomou G, Phillips I (2012) DCCC6: duty cycle-aware congestion control for 6LoWPAN networks. In: Proceedings of international conference on pervasive computing and communications workshops (PERCOM workshops). IEEE, pp 278–283

    Google Scholar 

  28. Deshpande VS, Chavan PP, Wadhai VM, Helonde JB (2012) Congestion control in wireless sensor networks by using differed reporting rate. In: Proceedings of world congress on information and communication technologies (WICT). IEEE, pp 209–213

    Google Scholar 

  29. Hull B, Jamieson K, Balakrishnan H (2004) Mitigating congestion in wireless sensor networks. In: Proceedings of the 2nd international conference on embedded networked sensor systems. ACM, pp 134–147

    Google Scholar 

  30. Wang C, Li B, Sohraby K, Daneshmand M, Hu Y (2007) Upstream congestion control in wireless sensor networks through cross-layer optimization. IEEE J Sel Areas Commun 25(4):786–795

    Article  Google Scholar 

  31. Zawodniok M, Jagannathan S (2007) Predictive congestion control protocol for wireless sensor networks. IEEE Trans Wirel Commun 6(11):3955–3963

    Article  Google Scholar 

  32. Jaiswal S, Yadav A (2013) Fuzzy based adaptive congestion control in wireless sensor networks. In: Proceedings of 6th international conference on contemporary computing (IC3). IEEE, pp 433–438

    Google Scholar 

  33. Sergiou C, Vassiliou V, Paphitis A (2013) Hierarchical tree alternative path (HTAP) algorithm for congestion control in wireless sensor networks. Ad Hoc Netw 11(1):257–272

    Article  Google Scholar 

  34. Kim H-S, Paek J, Bahk S (2015) QU-RPL: queue utilization based RPL for load balancing in large scale industrial applications. In: Proceedings of 12th annual IEEE international conference on sensing, communication, and networking (SECON). IEEE, pp 265–273

    Google Scholar 

  35. Castellani AP, Rossi M, Zorzi M (2014) Back pressure congestion control for CoAP/6LoWPAN networks. Ad Hoc Netw 18:71–84

    Article  Google Scholar 

  36. Huang J-M, Li C-Y, Chen K-H (2009) TALONet: a power-efficient grid-based congestion avoidance scheme using multi-detouring technique in wireless sensor networks. In: Proceedings of wireless telecommunications symposium (WTS). IEEE, pp 1–6

    Google Scholar 

  37. Al-Kashoash HAA, Al-Nidawi Y, Kemp AH (2016) Congestion-aware RPL for 6LoWPAN networks. In: Proceedings of wireless telecommunications symposium (WTS 2016). IEEE, pp 1–6

    Google Scholar 

  38. Wan J, Xu X, Feng R, Wu Y (2009) Cross-layer active predictive congestion control protocol for wireless sensor networks. Sensors 9(10):8278–8310

    Article  Google Scholar 

  39. Rangwala S, Gummadi R, Govindan R, Psounis K (2006) Interference-aware fair rate control in wireless sensor networks. ACM SIGCOMM Comput Commun Rev 36(4):63–74

    Article  Google Scholar 

  40. Fang W-W, Chen J-M, Shu L, Chu T-S, Qian D-P (2010) Congestion avoidance, detection and alleviation in wireless sensor networks. J Zhejiang Univ Sci C 11(1):63–73

    Article  Google Scholar 

  41. Sheu J-P, Hu W-K (2008) Hybrid congestion control protocol in wireless sensor networks. In: Proceedings of vehicular technology conference (VTC). IEEE, pp 213–217

    Google Scholar 

  42. Kang J, Zhang Y, Nath B (2007) TARA: topology-aware resource adaptation to alleviate congestion in sensor networks. IEEE Trans Parallel Distrib Syst 18(7):919–931

    Article  Google Scholar 

  43. Lee J-H, Jung I-B (2010) Adaptive-compression based congestion control technique for wireless sensor networks. Sensors 10(4):2919–2945

    Article  Google Scholar 

  44. Sheu JP, Hsu CX, Ma C (2015) A game theory based congestion control protocol for wireless personal area networks. In: Proceedings of 39th annual computer software and applications conference (COMPSAC), vol 2

    Google Scholar 

  45. Ma C, Sheu J-P, Hsu C-X (2015) A game theory based congestion control protocol for wireless personal area networks. J Sens

    Google Scholar 

  46. Fahmy HMA (2016) Simulators and emulators for WSNs. Wireless sensor networks. Springer, Berlin, pp 381–491

    Google Scholar 

  47. Levis P, Madden S, Polastre J, Szewczyk R, Whitehouse K, Woo A, Gay D, Hill J, Welsh M, Brewer E et al (2005) TinyOS: an operating system for sensor networks. Ambient intelligence. Springer, Berlin, pp 115–148

    Google Scholar 

  48. Dunkels A, Grönvall B, Voigt T (2004) Contiki - a lightweight and flexible operating system for tiny networked sensors. In: Proceedings of 29th annual IEEE international conference on local computer networks. IEEE, pp 455–462

    Google Scholar 

  49. Dunkels A (2009) Contiki: bringing IP to sensor networks. ERCIM News 76:2009

    Google Scholar 

  50. Dunkels A, Eriksson J, Finne N, Tsiftes N (2011) Powertrace: network-level power profiling for low-power wireless networks. Swedish Institute of Computer Science (SICS), Technical report

    Google Scholar 

  51. Thingsquare (2016) Why choose Contiki. http://www.contiki-os.org/

  52. Dunkels A, Schmidt O, Voigt T, Ali M (2006) Protothreads: simplifying event-driven programming of memory-constrained embedded systems. In: Proceedings of the 4th international conference on embedded networked sensor systems. ACM, pp 29–42

    Google Scholar 

  53. Baccelli E, Hahm O, Gunes M, Wahlisch M, Schmidt TC (2013) RIOT OS: towards an OS for the internet of things. In: Proceedings of the 32nd international conference on computer communications (INFOCOM). IEEE, pp 79–80

    Google Scholar 

  54. Will H, Schleiser K, Schiller J (2009) A real-time kernel for wireless sensor networks employed in rescue scenarios. In: Proceedings of the 34th conference on local computer networks (LCN). IEEE, pp 834–841

    Google Scholar 

  55. Levis P, Lee N (2003) TOSSIM: a simulator for TinyOS networks. UC Berkeley, vol 24

    Google Scholar 

  56. Osterlind F, Dunkels A, Eriksson J, Finne N, Voigt T (2006) Cross-level sensor network simulation with COOJA. In: Proceedings of 31st IEEE conference on local computer networks. IEEE, pp 641–648

    Google Scholar 

  57. Stehlık M (2011) Comparison of simulators for wireless sensor networks. Master’s thesis, Faculty of Informatics, Masaryk University, Brno, Czech Republic

    Google Scholar 

  58. Österlind F, Eriksson J, Dunkels A (2010) COOJA TimeLine: a power visualizer for sensor network simulation. In: Proceedings of the 8th ACM conference on embedded networked sensor systems. ACM, pp 385–386

    Google Scholar 

  59. Downard IT (2004) Simulating sensor networks in NS-2. DTIC document.Technical report

    Google Scholar 

  60. Henderson TR, Lacage M, Riley GF, Dowell C, Kopena J (2008) Network simulations with the NS-3 simulator. SIGCOMM Demonstr 15:17

    Google Scholar 

  61. Simon G, Volgyesi P, Maróti M, Lédeczi Á (2003) Simulation-based optimization of communication protocols for large-scale wireless sensor networks. In: Proceedings of IEEE aerospace conference, vol 3, pp 1339–1346

    Google Scholar 

  62. Chang X (1999) Network simulations with OPNET. In: Proceedings of the 31st conference on winter simulation: simulation—a bridge to the future-volume 1. ACM, pp 307–314

    Google Scholar 

  63. Varga A (2001) The OMNeT++ discrete event simulation system. In: Proceedings of the European simulation multiconference (ESM’2001), pp 185–192

    Google Scholar 

  64. Kirsche M, Hartwig J (2013) A 6LoWPAN model for OMNeT++: poster abstract. In: Proceedings of the 6th international ICST conference on simulation tools and techniques. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp 330–333

    Google Scholar 

  65. Ee CT, Bajcsy R (2004) Congestion control and fairness for many-to-one routing in sensor networks. In: Proceedings of the 2nd international conference on embedded networked sensor systems. ACM, pp 148–161

    Google Scholar 

  66. Chen S, Zhang Z (2006) Localized algorithm for aggregate fairness in wireless sensor networks. In: Proceedings of the 12th annual international conference on mobile computing and networking. ACM, pp 274–285

    Google Scholar 

  67. Chen S, Yang N (2006) Congestion avoidance based on lightweight buffer management in sensor networks. IEEE Trans Parallel Distrib Syst 17(9):934–946

    Article  Google Scholar 

  68. Monowar MM, Rahman MO, Hong CS (2008) Multipath congestion control for heterogeneous traffic in wireless sensor network. In: Proceedings of 10th international conference on advanced communication technology (ICACT), vol 3. IEEE, pp 1711–1715

    Google Scholar 

  69. Wang G, Liu K (2009) Upstream hop-by-hop congestion control in wireless sensor networks. In: Proceedings of 20th international symposium on personal, indoor and mobile radio communications. IEEE, pp 1406–1410

    Google Scholar 

  70. Alam MM, Hong CS (2009) CRRT: congestion-aware and rate-controlled reliable transport in wireless sensor networks. IEICE Trans Commun 92(1):184–199

    Article  Google Scholar 

  71. Brahma S, Chatterjee M, Kwiat K (2010) Congestion control and fairness in wireless sensor networks. In: Proceedings of 8th IEEE international conference on pervasive computing and communications workshops (PERCOM workshops). IEEE, pp 413–418

    Google Scholar 

  72. Heikalabad SR, Ghaffari A, Hadian MA, Rasouli H (2011) DPCC: dynamic predictive congestion control in wireless sensor networks. IJCSI Int J Comput Sci Issues 8(1)

    Google Scholar 

  73. Munir SA, Bin YW, Biao R, Jian M (2007) Fuzzy logic based congestion estimation for QoS in wireless sensor network. In: Proceedings of wireless communications and networking conference (WCNC 2007). IEEE, pp 4336–4341

    Google Scholar 

  74. Wei J, Fan B, Sun Y (2012) A congestion control scheme based on fuzzy logic for wireless sensor networks. In: Proceedings of 9th international conference on fuzzy systems and knowledge discovery (FSKD). IEEE, pp 501–504

    Google Scholar 

  75. He T, Ren F, Lin C, Das S (2008) Alleviating congestion using traffic-aware dynamic routing in wireless sensor networks. In: Proceedings of 5th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON’08). IEEE, pp 233–241

    Google Scholar 

  76. Woo A, Tong T, Culler D (2003) Taming the underlying challenges of reliable multihop routing in sensor networks. In: Proceedings of the 1st international conference on embedded networked sensor systems. ACM, pp 14–27

    Google Scholar 

  77. Rahman MO, Monowar MM, Hong CS (2008) A QoS adaptive congestion control in wireless sensor network. In: Proceedings of 10th international conference on advanced communication technology (ICACT), vol 2. IEEE, pp 941–946

    Google Scholar 

  78. Wang C, Sohraby K, Li B (2005) SenTCP: a hop-by-hop congestion control protocol for wireless sensor networks. In: Proceedings of IEEE INFOCOM, 2005, pp 107–114

    Google Scholar 

  79. Sergiou C, Vassiliou V, Paphitis A (2014) Congestion control in wireless sensor networks through dynamic alternative path selection. Comput Netw 75:226–238

    Article  Google Scholar 

  80. Dasgupta R, Mukherjee R, Gupta A (2015) Congestion avoidance topology in wireless sensor network using Karnaugh map. In: Proceedings of applications and innovations in mobile computing (AIMoC). IEEE, pp 89–96

    Google Scholar 

  81. Razzaque MA, Hong CS (2009) Congestion detection and control algorithms for multipath data forwarding in sensor networks. In: Proceedings of 11th international conference on advanced communication technology (ICACT), vol 1. IEEE, pp 651–653

    Google Scholar 

  82. Sergiou C, Vassiliou V (2014) HRTC: a hybrid algorithm for efficient congestion control in wireless sensor networks. In: Proceedings of 6th international conference on new technologies, mobility and security (NTMS). IEEE, pp 1–5

    Google Scholar 

  83. Tassiulas L, Ephremides A (1992) Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans Autom Control 37(12):1936–1948

    Article  MathSciNet  Google Scholar 

  84. Hellaoui H, Koudil M (2015) Bird flocking congestion control for CoAP/RPL/6LoWPAN networks. In: Proceedings of the workshop on IoT challenges in mobile and industrial systems. ACM, pp 25–30

    Google Scholar 

  85. Shelby Z, Hartke K, Bormann C (2014) The constrained application protocol (CoAP). IETF RFC 7252

    Google Scholar 

  86. Kim H-S, Kim H, Paek J, Bahk S (2016) Load balancing under heavy traffic in RPL routing protocol for low power and lossy networks. IEEE Trans Mob Comput

    Google Scholar 

  87. Winter T, Thubert P, Brandt A, Hui J, Kelsey R (2012) RPL: IPv6 routing protocol for low-power and lossy networks. IETF, RFC 6550

    Google Scholar 

  88. Thubert P (2012) Objective function zero for the routing protocol for low-power and lossy networks (RPL). RFC 6552

    Google Scholar 

  89. Gnawali O, Levis P (2010) The ETX objective function for RPL. Internet draft: draft-gnawali-roll-etxof-00

    Google Scholar 

  90. Tang W, Ma X, Huang J, Wei J (2015) Toward improved RPL: a congestion avoidance multipath routing protocol with time factor for wireless sensor networks. J Sens 2016

    Google Scholar 

  91. Lodhi MA, Rehman A, Khan MM, Hussain FB (2015) Multiple path RPL for low power lossy networks. In: Proceedings of Asia Pacific conference on wireless and mobile (APWiMob). IEEE, pp 279–284

    Google Scholar 

  92. Ha M, Kwon K, Kim D, Kong P-Y (2014) Dynamic and distributed load balancing scheme in multi-gateway based 6LoWPAN. In: Proceedings of international conference on internet of things (iThings), green computing and communications (GreenCom) and cyber, physical and social computing (CPSCom). IEEE, pp 87–94

    Google Scholar 

  93. Liu X, Guo J, Bhatti G, Orlik P, Parsons K (2013) Load balanced routing for low power and lossy networks. In: Proceedings of wireless communications and networking conference (WCNC). IEEE, pp 2238–2243

    Google Scholar 

  94. Guo J, Liu X, Bhatti G, Orlik P, Parsons K (2013) Load balanced routing for low power and lossy networks, 21 January 2013, US Patent Application 13/746,173

    Google Scholar 

  95. Tang W, Wei Z, Zhang Z, Zhang B (2014) Analysis and optimization strategy of multipath RPL based on the COOJA simulator. Int J Comput Sci Issues (IJCSI) 11(5):27–30

    Google Scholar 

  96. Kamgueu PO, Nataf E, Ndié TD, Festor O (2013) Energy-based routing metric for RPL. [Research report] RR-8208, INRIA, p 14

    Google Scholar 

  97. Zheng T, Ayadi A, Jiang X (2011) TCP over 6LoWPAN for industrial applications: an experimental study. In: Proceedings of 4th IFIP international conference on new technologies, mobility and security (NTMS). IEEE, pp 1–4

    Google Scholar 

  98. Ayadi A, Maillé P, Ros D (2011) TCP over low-power and lossy networks: tuning the segment size to minimize energy consumption. In: Proceedings of 4th IFIP international conference on new technologies, mobility and security (NTMS). IEEE, pp 1–5

    Google Scholar 

  99. Kim H-S, Im H, Lee M-S, Paek J, Bahk S (2015) A measurement study of TCP over RPL in low-power and lossy networks. J Commun Netw 17(6):647–655

    Article  Google Scholar 

  100. Antoniou P, Pitsillides A, Blackwell T, Engelbrecht A, Michael L (2013) Congestion control in wireless sensor networks based on bird flocking behavior. Comput Netw 57(5):1167–1191

    Article  Google Scholar 

  101. Michopoulos V, Guan L, Oikonomou G, Phillips I (2011) A comparative study of congestion control algorithms in IPv6 wireless sensor networks. In: Proceedings of international conference on distributed computing in sensor systems and workshops (DCOSS). IEEE, pp 1–6

    Google Scholar 

  102. Weldon M (2016) The future X network: a Bell Labs perspective. CRC Press, Boca Raton

    Google Scholar 

  103. Dunlap J (2011) From billing and technology convergence to ecosystem convergence: Why M2M matters to your business. Pipeline: Technol Serv Provid 8(7):14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hayder Al-Kashoash .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Kashoash, H. (2020). Background and Literature Review. In: Congestion Control for 6LoWPAN Wireless Sensor Networks: Toward the Internet of Things. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-17732-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17732-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17731-7

  • Online ISBN: 978-3-030-17732-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics