Skip to main content

FDI Approach

  • Chapter
  • First Online:
Fault Diagnosis of Dynamic Systems

Abstract

Model-based Fault Detection and Isolation (FDI) of dynamic systems is based on the use of models (analytical redundancy) to check the consistency of observed behaviors. This consistency check is based on computing the difference between the predicted value from the model and the real value measured by the sensors. Then, this difference, known as residual, is compared with a threshold value (zero in the ideal case). When the residual is greater than the threshold, it is considered that there is a fault in the system. Otherwise, it is considered that either the system is working properly or, if it is faulty, the fault cannot be detected. This is denoted as residual evaluation. Due to the presence of noise, disturbances, and model errors, the residuals are never zero, even if there is no fault. Therefore, the detection decision requires testing the residual against thresholds, obtained empirically or by theoretical considerations. Also the desensitizing of the residual from the noise, the disturbances, and the model errors while maximizing fault sensitivity is the goal of the robust design of the detection and diagnosis algorithms.  Fault detection is followed by the fault isolation procedure which intends to distinguish a particular fault from others. While a single residual is sufficient to detect faults, a set (or a vector) of residuals is required for fault isolation [13]. If a fault can be distinguished from other faults using a residual set, then it is said that this fault is isolable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adrot, O., Flaus, J.M.: Fault detection based on uncertain models with bounded parameters and bounded parameter variations. In: Proceedings of 17th IFAC World Congress, Seoul, Korea (2008)

    Google Scholar 

  2. Armengol, J., Vehí, J., Travé-Massuyès, L., Sainz, M.Á.: Interval model-based fault detection using multiple sliding windows. In: 4th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS, pp. 168–173 (2000)

    Google Scholar 

  3. Armengol, J., Vehí, J., Sainz, M.Á., Herrero, P., Gelso, E.: Squaltrack: a tool for robust fault detection. IEEE Trans. Syst. Man Cybern. Part B 39(2), 475–488 (2008)

    Article  Google Scholar 

  4. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  5. Chen, J., Patton, R.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  6. Chow, E., Willsky, A.: Analytical redundancy and the design of robust failure detection systems. IEEE Trans. Autom. Control AC-29, 603–614 (1984)

    Article  MathSciNet  Google Scholar 

  7. Clark, R.N., Fosth, D., Walton, V.M.: Detection instrument malfunctions in control systems. IEEE Trans. Aerosp. Electron. Syst. 11, 465–473 (1975)

    Article  Google Scholar 

  8. Emami-Naeini, A., Akhter, M., Rock, S.: Effect of model uncertainty on failure detection: the threshold selector. IEEE Trans. Autom. Control AC-33, 1106–1115 (1988)

    Article  Google Scholar 

  9. Escobet, T., Travé-Massuyès, L., Tornil, S., Quevedo, J.: Fault detection of a gas turbine fuel actuator based on qualitative causal models. In: Proceedings of European Control Conference (ECC’01), Porto, Portugal (2001)

    Google Scholar 

  10. Fagarasan, I., Ploix, S., Gentil, S.: Causal fault detection and isolation based on a set-membership approach. Automatica 40, 2099–2110 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Fuente, M.J., Vega, P.: Neural networks applied to fault detection of a biotechnological process. Eng. Appl. Artificial Intell. 12, 569–584 (1999)

    Article  Google Scholar 

  12. Fuente, M.J., Vega, P., Zarrop, M., Poch, M.: Fault detection in a real wastewater plant using parameter-estimation techniques. Control Eng. Pract. 4(8), 1089–1098 (1996)

    Article  Google Scholar 

  13. Gertler, J.: Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker, New York (1998)

    Google Scholar 

  14. Hamelin, F., Sauter, D.: Robust fault detection in uncertain dynamic systems. Automatica 36(11), 1747–1754 (2000)

    Article  Google Scholar 

  15. Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (1992)

    MATH  Google Scholar 

  16. Horak, D.T.: Failure detection in dynamic systems with modelling errors. AIAA J. Guid. Control Dyn. 11(6), 508–516 (1988)

    Article  Google Scholar 

  17. Isermann, R.: Process fault detection based on modeling and estimation methods—a survey. Automatica 20(4), 387–404 (1984)

    Article  Google Scholar 

  18. Isermann, R.: Fault diagnosis of machines via parameter estimation and knowledge processing. Automatica 29, 815–836 (1993)

    Article  MathSciNet  Google Scholar 

  19. Isermann, R.: Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer, Berlin (2006)

    Book  Google Scholar 

  20. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Dordrecht (1996)

    Book  Google Scholar 

  21. Milanese, M., Norton, J., Piet-Lahanier, H., Walter, E.: Bounding Approaches to System Identification. Plenum Press, New York (1996)

    Book  Google Scholar 

  22. Patton, R.J., Chen, J.: Observer-based fault detection and isolation: robustness and applications. Control Eng. Pract. 5(5), 671–682 (1997)

    Article  Google Scholar 

  23. Ploix, S., Adrot, O.: Parity relations for linear uncertain dynamic systems. Automatica 42(6) (2006)

    Article  MathSciNet  Google Scholar 

  24. Ploix, S., Follot, C.: Fault diagnosis reasoning for set-membership approaches and application. In: IEEE International Symposium on Intelligent Control (2001)

    Google Scholar 

  25. Puig, V., Quevedo, J., Escobet, T., de las Heras, S.: Robust fault detection approaches using interval models. In: 16th IFAC World Congress (2002)

    Google Scholar 

  26. Puig, V., Saludes, J., Quevedo, J.: Worst-case simulation of discrete linear time-invariant interval dynamic systems. Reliab. Comput. 9(4), 251–290 (2003)

    Article  MathSciNet  Google Scholar 

  27. Puig, V., Stancu, A., Escobet, T., Nejjari, F., Quevedo, J., Patton, R.: Passive robust fault detection using interval observers: application to the DAMADICS benchmark problem. Control Eng. Pract. 14(6), 621–633 (2006)

    Article  Google Scholar 

  28. Puig, V., Quevedo, J., Escobet, T., Nejjari, F., de las Heras, S.: Passive robust fault detection of dynamic processes using interval models. IEEE Trans. Control Syst. Technol. 16(5), 1083–1089 (2008)

    Article  Google Scholar 

  29. Rambeaux, F., Hamelin, F., Sauter, D.: Optimal thresholding for robust fault detection of uncertain systems. Int. J. Robust Nonlinear Control 10(14), 1155–1173 (2000)

    Article  MathSciNet  Google Scholar 

  30. Rinner, B., Weiss, U.: Online monitoring by dynamically refining imprecise models. IEEE Trans. Syst. Man Cybern. 34, 1811–1822 (2004)

    Article  Google Scholar 

  31. Sainz, M.Á., Armengol, J., Vehí, J.: Fault detection and isolation of the three-tank system using the modal interval analysis. J. Process Control 12(2), 325–338 (2002)

    Article  Google Scholar 

  32. Tornil, S., Escobet, T., Travé-Massuyès, L.: Robust fault detection using interval models. In: Proceedings of European Control Conference (ECC’03), Cambridge, UK (2003)

    Google Scholar 

  33. Travé-Massuyès, L., Escobet, T., Pons, R., Tornil, S.: The Ca\(\sim \)En diagnosis system and its automatic modelling method. Computación y Sistemas 5(2), 648–658 (2001)

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Spanish State Research Agency (AEI) and the European Regional Development Fund (FEDER) through the projects MASCONTROL (ref. MINECO DPI2015-67341-C2-2-R), (ref. MINECO DPI2016-78831-C2-2-r), DEOCS (ref. MINECO DPI2016-76493) and SCAV (ref. MINECO DPI2017-88403-R). This work has also been partially funded by AGAUR of Generalitat de Catalunya through the grants 2017 SGR 01551/2017 SGR 482 and by Agència de Gestió d’Ajuts Universitaris i de Recerca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicenç Puig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puig, V., de la Fuente, M.J., Armengol, J. (2019). FDI Approach. In: Escobet, T., Bregon, A., Pulido, B., Puig, V. (eds) Fault Diagnosis of Dynamic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-17728-7_4

Download citation

Publish with us

Policies and ethics