Skip to main content

Fault Diagnosis Using Set-Membership Approaches

  • Chapter
  • First Online:
Fault Diagnosis of Dynamic Systems

Abstract

As discussed in Chap. 4, model-based fault detection of dynamic processes is based on the use of models (i.e., analytical redundancy) to check the consistency of observed behaviours. However, when building a model of a dynamic process to monitor its behaviour, there is always some mismatch between the modelled and real behaviour due to the fact that some effects are neglected, some non-linearities are linearised in order to simplify the model, some parameters have tolerance when are compared between several units of the same component, some errors in parameters (or in the structure) of the model are introduced in the model identification process, etc. These modelling errors introduce some uncertainty in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The problem of wrapping is related to the use of a crude approximation of set of states associated with the interval simulation. If at each iteration, the true solution set is wrapped into its interval hull, since the overestimation of the wrapped set is proportional to its radius, a spurious growth of the enclosures can result if the composition of wrapping and mapping is iterated.

References

  1. Ackermann, J.: Robust Control: The Parameter Space Approach. Springer, London, UK (2002)

    Book  Google Scholar 

  2. Adrot, O., Flaus, J.M.: Fault detection based on uncertain models with bounded parameters and bounded parameter variations. In: Proceedings of the 17th IFAC World Congress, Seoul, Korea (2008)

    Google Scholar 

  3. Alamo, T., Bravo, J., Camacho, E.: Guaranteed state estimation by zonotopes. Automatica 41(6), 1035–1043 (2005)

    Article  MathSciNet  Google Scholar 

  4. Armengol, J., Travé-Massuyès, L., Vehí, J., de la Rosa, J.L.: A survey on interval model simulators and their properties related to fault detection. Annu. Rev. Control 24, 31–39 (2000)

    Article  Google Scholar 

  5. Armengol, J., Vehí, J., Sainz, M., Herrero, P., Gelso, E.: Squaltrack: a tool for robust fault detection. IEEE Trans. Syst. Man Cybern. Part B 39(2), 475–488 (2008)

    Article  Google Scholar 

  6. Bhattacharyya, S., Chapellat, H., Keel, L.: Robust control: the parametric approach. Prentice Hall PTR, New Jersey (1995)

    MATH  Google Scholar 

  7. Bravo, J., Alamo, T., Camacho, E.: Bounded error identification of systems with time-varying parameters. IEEE Trans. Autom. Control 51, 1144–1150 (2006)

    Article  MathSciNet  Google Scholar 

  8. Calafiore, G.: A set-valued non-linear filter for robust localization. In: Proceedings of European Control Conference (ECC’01), Porto, Portugal (2001)

    Google Scholar 

  9. Calafiore, G., Campi, M.C., Ghaoui, L.E.: Identification of reliable predictor models for unknown systems: a data-consistency approach based on learning theory. In: Proceedings of the 15th IFAC World Congress, Barcelona, Spain (2002)

    Google Scholar 

  10. Campi, M., Calafiore, G., Garatti, S.: Interval predictor models: identification and reliability. Automatica 45(8), 382–391 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Chen, J., Patton, R.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  12. Chilali, M., Gahinet, P.: \({H}_\infty \) design with pole placement constraints: an LMI approach. IEEE Trans. Autom. Control 41(3), 358–367 (1996)

    Article  MathSciNet  Google Scholar 

  13. Chisci, L., Garulli, A., Zappa, G.: Recursive state bounding by parallelotopes. Automatica 32, 1049–1055 (1996)

    Article  MathSciNet  Google Scholar 

  14. Emami-Naeini, A., Akhter, M., Rock, S.: Effect of model uncertainty on failure detection: the threshold selector. IEEE Trans. Autom. Control AC-33, 1106–1115 (1988)

    Article  Google Scholar 

  15. Escobet, T., Travé-Massuyès, L., Tornil, S., Quevedo, J.: Fault detection of a gas turbine fuel actuator based on qualitative causal models. In: Proceedings of European Control Conference (ECC’01), Porto, Portugal (2001)

    Google Scholar 

  16. Fagarasan, I., Ploix, S., Gentil, S.: Causal fault detection and isolation based on a set-membership approach. Automatica 40, 2099–2110 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Gertler, J.: Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker, New York (1998)

    Google Scholar 

  18. Guerra, P., Puig, V., Ingimundarson, A.: Robust fault detection using a consistency-based state estimation. In: Proceedings of IEEE European Control Conference (ECC’07), Kos, Greece (2007)

    Google Scholar 

  19. Guerra, P., Puig, V., Witczak, M.: Robust fault detection with unknown-input interval observers using zonotopes. In: Proceedings of 17th IFAC World Congress, Seoul, Korea (2008)

    Google Scholar 

  20. Hamelin, F., Sauter, D.: Robust fault detection in uncertain dynamic systems. Automatica 36(11), 1747–1754 (2000)

    Article  Google Scholar 

  21. Hansen, E.: Global Optimization Using Interval Analysis. Marcel Dekker, New York (1992)

    MATH  Google Scholar 

  22. Horak, D.: Failure detection in dynamic systems with modelling errors. AIAA J. Guid. Control Dyn. 11(6), 508–516 (1988)

    Article  Google Scholar 

  23. Ingimundarson, A., Bravo, J., Puig, V., Alamo, T., Guerra, P.: Robust fault detection using zonotope-based set-membership consistency test. J. Adapt. Control Signal Process. 23(4), 311–330 (2008)

    Article  Google Scholar 

  24. Isermann, R.: Fault Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer, New York (2006)

    Book  Google Scholar 

  25. Kieffer, M., Jaulin, L., Walter, E.: Guaranteed recursive non-linear state bounding using interval analysis. Int. J. Adapt. Control Signal Process. 16(3), 193–218 (2002)

    Article  Google Scholar 

  26. Kolev, L.: Interval Methods for Circuit Analysis. World Scientific, Singapore (1993)

    Book  Google Scholar 

  27. Kuipers, B.: Qualitative Reasoning - Modelling and Simulation with Incomplete Knowledge. MIT Press, Cambridge, MA (1994)

    Google Scholar 

  28. Maksarov, D., Norton, J.: State bounding with ellipsoidal set description of the uncertainty. Int. J. Control 65(5), 847–866 (1996)

    Article  MathSciNet  Google Scholar 

  29. Milanese, M., Norton, J., Piet-Lahanier, H., Walter, E.: Bounding Approaches to System Identification. Plenum Press, New York (1996)

    Book  Google Scholar 

  30. Montgomery, H.: Computing the volume of a zonotope. Am. Math. Mon. 96, 431 (1989)

    Article  Google Scholar 

  31. Ocampo, C., Tornil, S., Puig, V.: Robust fault detection using interval constraints satisfaction and set computations. In: Proceedings of IFAC SAFEPROCESS’06, Beijing, China (2006)

    Google Scholar 

  32. Planchon, P., Lunze, J.: Robust diagnosis using state estimation. In: Proceedings of IFAC SAFEPROCESS’06, Beijing, China (2006)

    Google Scholar 

  33. Ploix, S., Adrot, O.: Parity relations for linear uncertain dynamic systems. Automatica 42(6) (2006)

    Article  MathSciNet  Google Scholar 

  34. Ploix, S., Adrot, O., Ragot, J.: Parameter uncertainty computation in static linear models. In: Proceedings of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona, USA (1999)

    Google Scholar 

  35. Puig, V., Quevedo, J., Escobet, T., Nejjari, F., de las Heras, S.: Passive robust fault detection of dynamic processes using interval models. IEEE Trans. Control Syst. Technol. 16(5), 1083–1089 (2008)

    Article  Google Scholar 

  36. Puig, V., Saludes, J., Quevedo, J.: Worst-case simulation of discrete linear time-invariant interval dynamic systems. Reliab. Comput. 9(4), 251–290 (2003)

    Article  MathSciNet  Google Scholar 

  37. Puig, V., Stancu, A., Escobet, T., Nejjari, F., Quevedo, J., Patton, R.: Passive robust fault detection using interval observers: application to the DAMADICS benchmark problem. Control Eng. Pract. 14(6), 621–633 (2006)

    Article  Google Scholar 

  38. Rambeaux, F., Hamelin, F., Sauter, D.: Optimal thresholding for robust fault detection of uncertain systems. Int. J. Robust Nonlinear Control 10(14), 1155–1173 (2000)

    Article  MathSciNet  Google Scholar 

  39. Rinner, B., Weiss, U.: Online monitoring by dynamically refining imprecise models. IEEE Trans. Syst. Man Cybern. Part B 34(4), 1811–1822 (2004)

    Article  Google Scholar 

  40. Rugh, W., Shamma, J.: A survey of research on gain-scheduling. Automatica 36(10), 1401–1425 (2000)

    Article  MathSciNet  Google Scholar 

  41. Sainz, M., Armengol, J., Vehí, J.: Fault detection and isolation of the three-tank system using the modal interval analysis. J. Process Control 12(2), 325–338 (2002)

    Article  Google Scholar 

  42. Shamma, J.: Approximate set-value observer for nonlinear systems. IEEE Trans. Autom. Control 42(5), 648–658 (1997)

    Article  MathSciNet  Google Scholar 

  43. Tornil, S., Escobet, T., Travé-Massuyès, L.: Robust fault detection using interval models. In: Proceedings of European Control Conference (ECC’03), Cambridge, UK (2003)

    Google Scholar 

  44. Travé-Massuyes, L., Escobet, T., Pons, R., Tornil, S.: The CA EN diagnosis system and its automatic modelling method. Computación y Sistemas 5(2), 648–658 (2001)

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Spanish State Research Agency (AEI) and the European Regional Development Fund (ERFD) through the projects DEOCS (ref. MINECO DPI2016-76493) and SCAV (ref. MINECO DPI2017-88403-R). This work has also been partially funded by AGAUR of Generalitat de Catalunya through the Advanced Control Systems (SAC) group grant (2017 SGR 482) and by Agència de Gestió d’Ajuts Universitaris i de Recerca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicenç Puig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puig, V., Pourasghar, M. (2019). Fault Diagnosis Using Set-Membership Approaches. In: Escobet, T., Bregon, A., Pulido, B., Puig, V. (eds) Fault Diagnosis of Dynamic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-17728-7_10

Download citation

Publish with us

Policies and ethics