Skip to main content

Research Updates on Heavy Metal Phytoremediation: Enhancements, Efficient Post-harvesting Strategies and Economic Opportunities

  • Chapter
  • First Online:
Green Materials for Wastewater Treatment

Abstract

The remediation of heavy metal-contaminated sites must be viewed seriously as they affect the animal and human health. The amount of heavy metal released from the industries into the environment is expected to be more in the future due to rapid urbanization, industrialization, increased population and war spoil. The plant-mediated remediation of heavy metals from the contaminated site known as ‘phytoremediation’ was found to be effective, economically viable and safe. In this review, we elaborate the effect of heavy metal on human health, mechanisms of metal uptake in plants, enhancement techniques and challenges in the implementation of phytoremediation, comparison of existing physiochemical methods available for heavy metal with phytoremediation and disposal of metal-contaminated plant biomass in the economically profitable ways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDTA:

Cyclohexane-1,2-diamine tetra-acetic acid

CNS:

Central nervous system

DMA:

Dimethyl arsenic acid

DTPA:

Diethylenetriaminepentaacetic acid

EDDS:

Ethylenediamine-N, N′-disuccinic acid

EDTA:

Ethylene diamine tetra-acetic acid

EDX:

Energy-dispersive X-ray spectroscopy

EGTA:

Ethylene glycol-bis-(beta-amino-ethyl ether) N, N, N′, N′-tetra-acetic acid

GI:

Gastrointestinal

HMCB:

Heavy metal-contaminated biomass

MMA:

Monomethyl arsenic acid

NTA:

Nitrilotriacetic acid

TEM:

Transmission electron microscopy

UV:

Ultraviolet

XRD:

X-ray diffraction

References

  • Alam MM, ALOthman ZA, Naushad M (2013) Analytical and environmental applications of polyaniline Sn(IV) tungstoarsenate and polypyrrole polyantimonic acid composite cation-exchangers. J Ind Eng Chem 19:1973–1980. https://doi.org/10.1016/j.jiec.2013.03.006

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075

    Article  CAS  Google Scholar 

  • AL-Othman ZA, Naushad M, Inamuddin (2011) Organic-inorganic type composite cation exchanger poly-o-toluidine Zr(IV) tungstate: preparation, physicochemical characterization and its analytical application in separation of heavy metals. Chem Eng J 172:369–375. https://doi.org/10.1016/j.cej.2011.06.018

    Article  CAS  Google Scholar 

  • Arao T, Ishikawa S, Murakami M et al (2010) Heavy metal contamination of agricultural soil and countermeasures in Japan. Paddy Water Environ 8:247–257

    Article  Google Scholar 

  • Awasthi AK, Li J (2017) Management of electrical and electronic waste: a comparative evaluation of China and India. Renew Sust Energ Rev 76:434–447

    Article  Google Scholar 

  • Bagga DK, Peterson S (2001) Phytoremediation of arsenic-contaminated soil as affected by the chelating agent CDTA and different levels of soil pH. Remediation 12:77–85. https://doi.org/10.1002/rem.1027

    Article  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49

    Article  Google Scholar 

  • Banuelos GS, Lin Z-Q, Yin X (2013) Selenium in the environment and human health. CRC Press, Boca Raton

    Book  Google Scholar 

  • Bañuelos GS, Arroyo I, Pickering IJ et al (2015) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem 166:603–608

    Article  CAS  Google Scholar 

  • Bauddh K, Singh RP (2012) Cadmium tolerance and its phytoremediation by two oil yielding plants Ricinus Communis (L.) and Brassica Juncea (L.) from the contaminated soil. Int J Phytoremediat 14:772–785. https://doi.org/10.1080/15226514.2011.619238

    Article  CAS  Google Scholar 

  • Beattie IR, Haverkamp RG (2011) Silver and gold nanoparticles in plants: sites for the reduction to metal. Metallomics 3:628–632

    Article  CAS  Google Scholar 

  • Bernard S, Enayati A, Redwood L et al (2001) Autism: a novel form of mercury poisoning. [Review] [181 refs]. Med Hypotheses 56:462–471

    Article  CAS  Google Scholar 

  • Bian F, Zhong Z, Wu S et al (2018) Comparison of heavy metal phytoremediation in monoculture and intercropping systems of Phyllostachys praecox and Sedum plumbizincicola in polluted soil. Int J Phytoremediat 20:490–498

    Article  CAS  Google Scholar 

  • Bolton H, Girvin DC, Plymale AE et al (1996) Degradation of metal− nitrilotriacetate complexes by Chelatobacter heintzii. Environ Sci Technol 30:931–938

    Article  CAS  Google Scholar 

  • Braud A, Geoffroy V, Hoegy F et al (2010) The siderophores pyoverdine and pyochelin are involved in Pseudomonas aeruginosa resistance against metals: another biological function of these two siderophores. Environ Microbiol Rep 2:419–425

    Article  CAS  Google Scholar 

  • Břendová K, Tlustoš P, Száková J (2015) Can biochar from contaminated biomass be applied into soil for remediation purposes? Water Air Soil Pollut 226:193

    Article  CAS  Google Scholar 

  • Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493

    Article  CAS  Google Scholar 

  • Brooker RW, Callaghan TV (1998) The balance between positive and negative plant interactions and its relationship to environmental gradients: a model. Oikos:196–207

    Google Scholar 

  • Brunetti G, Ruta C, Traversa A et al (2018) Remediation of a heavy metals contaminated soil using mycorrhized and non-mycorrhized Helichrysum italicum (Roth) Don. Land Degrad Dev 29:91–104

    Article  Google Scholar 

  • Caliman FA, Robu BM, Smaranda C et al (2011) Soil and groundwater cleanup: benefits and limits of emerging technologies. Clean Techn Environ Policy 13:241–268

    Article  Google Scholar 

  • Chaney RL, Malik M, Li YM et al (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284. https://doi.org/10.1016/S0958-1669(97)80004-3

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  Google Scholar 

  • Conner AJ, Glare TR, Nap J-P (2003) The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J 33:19–46. https://doi.org/10.1046/j.0960-7412.2002.001607.x

    Article  Google Scholar 

  • Council NR (1999) Arsenic in drinking water. National Academies Press, Washington, DC

    Google Scholar 

  • Cullen WR, Reimer KJ (2016) Arsenic is everywhere: cause for concern? Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Dastyar W, Raheem A, He J, Zhao M (2019) Biofuel production using thermochemical conversion of heavy metal-contaminated biomass (HMCB) harvested from Phytoextraction process. Chem Eng J 358:759–785

    Article  CAS  Google Scholar 

  • De Souza MP, Pickering IJ, Walla M, Terry N (2002) Selenium assimilation and volatilization from selenocyanate-treated Indian mustard and muskgrass. Plant Physiol 128:625–633

    Article  CAS  Google Scholar 

  • Demidchik V (2015) Mechanisms of oxidative stress in plants: from classical chemistry to cell biology. Environ Exp Bot 109:212–228

    Article  CAS  Google Scholar 

  • Diels L, Spaans PH, Van Roy S et al (2003) Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy 71:235–241

    Article  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A et al (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107:1687–1696

    Article  CAS  Google Scholar 

  • Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114. https://doi.org/10.1016/j.biotechadv.2004.10.001

    Article  CAS  Google Scholar 

  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotoxicol Environ Saf 106:164–172

    Article  CAS  Google Scholar 

  • Etim EE (2012) Phytoremediation and its mechanisms: a review. Int J Environ Bioenergy 2:120–136

    Google Scholar 

  • Evans KM, Gatehouse JA, Lindsay WP et al (1992) Expression of the pea metallothionein-like gene PsMT A in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMT A function. Plant Mol Biol 20:1019–1028

    Article  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–666

    Article  CAS  Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6

    Article  CAS  Google Scholar 

  • Flora G, Gupta D, Tiwari A (2012) Toxicity of lead: a review with recent updates. Interdiscip Toxicol 5(2):47–58

    Article  CAS  Google Scholar 

  • Garbisu C, Hernández-Allica J, Barrutia O et al (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17:173–188. https://doi.org/10.1515/REVEH.2002.17.3.173

    Article  CAS  Google Scholar 

  • García G, Faz Á, Conesa HM (2003) Selection of autochthonous plant species from SE Spain for soil lead phytoremediation purposes. Water Air Soil Pollut Focus 3:243–250

    Article  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6:18

    Google Scholar 

  • Gisbert C, Ros R, De Haro A et al (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445. https://doi.org/10.1016/S0006-291X(03)00349-8

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  Google Scholar 

  • Grčman H, Vodnik D, Velikonja-Bolta Š, Leštan D (2003) Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J Environ Qual 32:500–506

    Article  Google Scholar 

  • Gutha Y, Munagapati VS, Naushad M, Abburi K (2015) Removal of Ni(II) from aqueous solution by Lycopersicum esculentum (Tomato) leaf powder as a low-cost biosorbent. Desalin Water Treat 54:200–208. https://doi.org/10.1080/19443994.2014.880160

    Article  CAS  Google Scholar 

  • Heaton ACP, Rugh CL, Wang N, Meagher RB (1998) Phytoremediation of mercury- and methylmercury-polluted soils using genetically engineered plants. J Soil Contam 7:497–509. https://doi.org/10.1080/10588339891334384

    Article  CAS  Google Scholar 

  • Hetland MD, Gallagher JR, Daly DJ et al (2001) Processing of plants used to phytoremediate lead-contaminated sites. In: Sixth international in situ and on site bioremediation symposium, pp 129–136

    Google Scholar 

  • Hossner LR, Loeppert RH, Newton RJ, Szaniszlo PJ (1998) Literature review: phytoaccumulation of chromium, uranium, and plutonium in plant systems. Amarillo National Resource Center for Plutonium, TX, USA

    Google Scholar 

  • Hovsepyan A, Greipsson S (2007) EDTA-enhanced phytoremediation of lead-contaminated soil by corn. J Plant Nutr 28(11):2037–2048. https://doi.org/10.1080/01904160500311151

    Article  CAS  Google Scholar 

  • Jain SK, Gujral GS, Jha NK, Vasudevan P (1992) Production of biogas from Azolla pinnata R. Br and Lemna minor L.: effect of heavy metal contamination. Bioresour Technol 41:273–277

    Article  CAS  Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N et al (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7:60–72. https://doi.org/10.2478/intox

    Article  Google Scholar 

  • Jobling J, Stevens FRW (1980) Establishment of trees on regraded colliery spoil heaps. Forestry Commission, Edinburgh

    Google Scholar 

  • Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, Rhodes CJ, Valkoc M (2011) Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol 31:95–107

    CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere–a critical review. Plant Soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones PW, Williams DR (2001) Chemical speciation used to assess [S, S′]-ethylenediaminedisuccinic acid (EDDS) as a readily-biodegradable replacement for EDTA in radiochemical decontamination formulations. Appl Radiat Isot 54:587–593

    Article  CAS  Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV et al (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002

    Article  CAS  Google Scholar 

  • Kachenko AG, Singh B (2006) Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut 169:101–123

    Article  CAS  Google Scholar 

  • Kamal M, Ghaly AE, Mahmoud N, CoteCôté R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039. https://doi.org/10.1016/S0160-4120(03)00091-6

    Article  CAS  Google Scholar 

  • Karthik V, Sivarajasekar N, Padmanaban VC et al (2018) Biosorption of xenobiotic Reactive Black B onto metabolically inactive T. harzianum biomass: optimization and equilibrium studies. Int J Environ Sci Technol:1–12

    Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM et al (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  CAS  Google Scholar 

  • Khan MS, Sajad MA, Khan WM et al (2009a) Phytoremediation of nickel from the effluents of selected ghee industries of Khyber Pakhtunkhwa, Pakistan

    Google Scholar 

  • Khan S, Farooq R, Shahbaz S et al (2009b) Health risk assessment of heavy metals for population via consumption of vegetables. World Appl Sci J 6:1602–1606

    CAS  Google Scholar 

  • Kopponen P, Utriainen M, Lukkari K et al (2001) Clonal differences in copper and zinc tolerance of birch in metal-supplemented soils. Environ Pollut 112:89–97

    Article  CAS  Google Scholar 

  • Kosolapov DB, Kuschk P, Vainshtein MB et al (2004) Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng Life Sci 4:403–411

    Article  CAS  Google Scholar 

  • Kulli B, Balmer M, Krebs R et al (1999) The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass. J Environ Qual 28:1699–1705

    Article  CAS  Google Scholar 

  • Kumar GP, Yadav SK, Thawale PR et al (2008) Growth of Jatropha curcas on heavy metal contaminated soil amended with industrial wastes and Azotobacter–A greenhouse study. Bioresour Technol 99:2078–2082

    Article  CAS  Google Scholar 

  • Kurniawan TA, GYS C, Lo W-H, Babel S (2006) Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98

    Article  CAS  Google Scholar 

  • Lăcătuşu R, Răuţă C, Cârstea S, Ghelase I (1996) Soil-plant-man relationships in heavy metal polluted areas in Romania. Appl Geochem 11:105–107

    Article  Google Scholar 

  • Ledin S (1996) Willow wood properties, production and economy. Biomass Bioenergy 11:75–83

    Article  CAS  Google Scholar 

  • Liu W-J, Tian K, Jiang H et al (2012) Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example. Environ Sci Technol 46:7849–7856

    Article  CAS  Google Scholar 

  • Ludwig RD, McGregor RG, Blowes DW et al (2002) A permeable reactive barrier for treatment of heavy metals. Groundwater 40:59–66

    Article  CAS  Google Scholar 

  • Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    Article  CAS  Google Scholar 

  • Mack RN, Simberloff D, Mark Lonsdale W et al (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Mancuso TF (1997) Chromium as an industrial carcinogen: Part II. Chromium in human tissues. Am J Ind Med 31:140–147. https://doi.org/10.1002/(SICI)1097-0274(19970204)31:2<140::AID-AJIM2>3.0.CO;2-3

    Article  CAS  Google Scholar 

  • Marchiol L (2012) Synthesis of metal nanoparticles in living plants. Ital J Agron 7:37

    Article  Google Scholar 

  • Masarovičová E, Kráľová K (2012) Plant-heavy metal interaction: phytoremediation, biofortification and nanoparticles. In: Advances in selected plant physiology aspects. InTech, Rijeka

    Google Scholar 

  • McIntyre T (2003) Phytoremediation of heavy metals from soils. In: Phytoremediation. Springer, pp 97–123

    Google Scholar 

  • Midhat L, Ouazzani N, Hejjaj A et al (2018) Phytostabilization of polymetallic contaminated soil using Medicago sativa L. in combination with powdered marble: sustainable rehabilitation. Int J Phytoremediat 20:764–772

    Article  CAS  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:161–168

    Article  CAS  Google Scholar 

  • Mizukoshi K, Nagaba M, Ohno Y et al (1975) Neurotological studies upon intoxication by organic mercury compounds. ORL 37:74–87. https://doi.org/10.1159/000275209

    Article  CAS  Google Scholar 

  • Mosoarca G, Vancea C, Popa S, Boran S (2018) Adsorption, bioaccumulation and kinetics parameters of the phytoremediation of cobalt from wastewater using Elodea canadensis. Bull Environ Contam Toxicol 100:733–739

    Article  CAS  Google Scholar 

  • Mudhoo A, Kumar S (2013) Effects of heavy metals as stress factors on anaerobic digestion processes and biogas production from biomass. Int J Environ Sci Technol 10:1383–1398

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001a) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207. https://doi.org/10.1016/S0013-7952(00)00101-0

    Article  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001b) An evaluation of technologies for the heavy metal remediation of dredged sediments. J Hazard Mater 85:145–163

    Article  CAS  Google Scholar 

  • Muthusaravanan S, Sivarajasekar N, Vivek JS et al (2018) Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environ Chem Lett:1–21

    Google Scholar 

  • Nabi SA, Naushad M (2007) Studies of cation-exchange thermodynamics for alkaline earths and transition metal ions on a new crystalline cation-exchanger aluminium tungstate: effect of the surfactant’s concentration on distribution coefficients of metal ions. Colloid Surf A Physicochem Eng Asp 293:175–184. https://doi.org/10.1016/j.colsurfa.2006.07.026

    Article  CAS  Google Scholar 

  • Nabi SA, Naushad M (2010) A new electron exchange material Ti(IV) iodovanadate: synthesis, characterization and analytical applications. Chem Eng J 158:100–107. https://doi.org/10.1016/j.cej.2009.12.011

    Article  CAS  Google Scholar 

  • Nabi SA, Naushad M, Bushra R (2009) Synthesis and characterization of a new organic-inorganic Pb2+ selective composite cation exchanger acrylonitrile stannic(IV) tungstate and its analytical applications. Chem Eng J 152:80–87. https://doi.org/10.1016/j.cej.2009.03.033

    Article  CAS  Google Scholar 

  • Naushad M, ALOthman ZA (2015) Separation of toxic Pb2+ metal from aqueous solution using strongly acidic cation-exchange resin: analytical applications for the removal of metal ions from pharmaceutical formulation. Desalin Water Treat 53:2158–2166. https://doi.org/10.1080/19443994.2013.862744

    Article  CAS  Google Scholar 

  • Naushad M, ALOthman ZA, Sharma G, Inamuddin (2015) Kinetics, isotherm and thermodynamic investigations for the adsorption of Co(II) ion onto crystal violet modified amberlite IR-120 resin. Ionics (Kiel) 21:1453–1459. https://doi.org/10.1007/s11581-014-1292-z

    Article  CAS  Google Scholar 

  • Neilson S, Rajakaruna N (2012) Roles of rhizospheric processes and plant physiology in applied phytoremediation of contaminated soils using Brassica oilseeds. In: The plant family Brassicaceae. Springer, Dordrecht, pp 313–330

    Chapter  Google Scholar 

  • Ogundiran MB, Mekwunyei NS, Adejumo SA (2018) Compost and biochar assisted phytoremediation potentials of Moringa oleifera for remediation of lead contaminated soil. J Environ Chem Eng 6:2206–2213

    Article  CAS  Google Scholar 

  • Paisio CE, Fernandez M, González PS et al (2018) Simultaneous phytoremediation of chromium and phenol by Lemna minuta Kunth: a promising biotechnological tool. Int J Environ Sci Technol 15:37–48

    Article  CAS  Google Scholar 

  • Pamukcu S, Kenneth Wittle J (1992) Electrokinetic removal of selected heavy metals from soil. Environ Prog 11:241–250

    Article  CAS  Google Scholar 

  • Pant D, Singh P (2014) Pollution due to hazardous glass waste. Environ Sci Pollut Res 21:2414–2436

    Article  CAS  Google Scholar 

  • Paramasivan T, Sivarajasekar N, Muthusaravanan S et al (2019) Graphene family materials for the removal of pesticides from water. In: A new generation material graphene: applications in water technology. Springer, Cham, pp 309–327

    Chapter  Google Scholar 

  • Patra HK, Mohanty M (2013) Phytomining: an innovative post phytoremediation management technology. Development 25:27

    Google Scholar 

  • Pilon-Smits EAH, de Souza MP, Hong G et al (1999) Selenium volatilization and accumulation by twenty aquatic plant species. J Environ Qual Madison 28:1011. https://doi.org/10.2134/jeq1999.00472425002800030035x

    Article  CAS  Google Scholar 

  • Pivetz BE (2001) Ground water issue: phytoremediation of contaminated soil and ground water at hazardous waste sites. NATIONAL RISK MANAGEMENT RESEARCH LAB ADA OK

    Google Scholar 

  • Prasad MNV (2015) Phytoremediation crops and biofuels. In: Sustainable agriculture reviews. Springer, Cham, pp 159–261

    Chapter  Google Scholar 

  • Rahman RAA, Abou-Shanab RA, Moawad H (2008) Mercury detoxification using genetic engineered Nicotiana tabacum. Glob NEST J 10:432–438

    Google Scholar 

  • Rai PK (2008) Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int J Phytoremediat 10:430–439. https://doi.org/10.1080/15226510802100606

    Article  CAS  Google Scholar 

  • Raistrick A, Jennings B (1965) A history of lead mining in the Pennine. Davis Books, Newcaste upon Tyne, p 347

    Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Reilly C (2008) Metal contamination of food: its significance for food quality and human health. Wiley, New York

    Google Scholar 

  • Rockwood DL, Naidu CV, Carter DR et al (2004) Short-rotation woody crops and phytoremediation: opportunities for agroforestry? In: Agroforestry systems. Springer, Dordrecht, pp 51–63

    Google Scholar 

  • Ruiz-Felix MN, Kelly WJ, Balsamo RA, Satrio JA (2016) Evaluation of sugars and bio-oil production using lead contaminated switchgrass feedstock. Waste Biomass Valoriz 7:1091–1104

    Article  CAS  Google Scholar 

  • Saha R, Nandi R, Saha B (2011) Sources and toxicity of hexavalent chromium. J Coord Chem 64:1782–1806

    Article  CAS  Google Scholar 

  • San Juan MRF, Albornoz CB, Larsen K, Najle R (2018) Bioaccumulation of heavy metals in Limnobium laevigatum and Ludwigia peploides: their phytoremediation potential in water contaminated with heavy metals. Environ Earth Sci 77:404

    Article  CAS  Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  CAS  Google Scholar 

  • Schalk IJ, Hannauer M, Braud A (2011) New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol 13:2844–2854

    Article  CAS  Google Scholar 

  • Schober SE, Mirel LB, Graubard BI et al (2006) Blood lead levels and death from all causes, cardiovascular disease, and cancer: results from the NHANES III mortality study. Environ Health Perspect 114:1538

    Article  CAS  Google Scholar 

  • Shekhawat GS, Arya V (2009) Biological synthesis of Ag nanoparticles through in vitro cultures of Brassica juncea C. zern. In: Advanced materials research. Zurich, Trans Tech Publ, pp 295–299

    Google Scholar 

  • Sheng X, He L, Wang Q et al (2008) Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in a cadmium-amended soil. J Hazard Mater 155:17–22

    Article  CAS  Google Scholar 

  • Singhal V, Rai JPN (2003) Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Bioresour Technol 86:221–225

    Article  CAS  Google Scholar 

  • Sivarajasekar N (2007) Hevea brasiliensis – a biosorbent for the adsorption of Cu (II) from aqueous solutions. Carbon Lett 8:199–206

    Article  Google Scholar 

  • Sivarajasekar N (2014) Biosorption of cationic dyes using waste cotton seeds

    Google Scholar 

  • Sivarajasekar N, Baskar R, Balakrishnan V (2009) Biosorption of an azo dye from aqueous solutions onto Spirogyra. J Univ Chem Technol Metall 44:157–164

    CAS  Google Scholar 

  • Sivarajasekar N, Balasubramani K, Mohanraj N et al (2017a) Fixed-bed adsorption of atrazine onto microwave irradiated Aegle marmelos Correa fruit shell: statistical optimization, process design and breakthrough modeling. J Mol Liq 241:823–830

    Article  CAS  Google Scholar 

  • Sivarajasekar N, Mohanraj N, Balasubramani K et al (2017b) Optimization, equilibrium and kinetic studies on ibuprofen removal onto microwave assisted—activated Aegle marmelos correa fruit shell. Desalin Water Treat 84:48–58

    Article  CAS  Google Scholar 

  • Sivarajasekar N, Mohanraj N, Sivamani S et al (2017c) Comparative modeling of fluoride biosorption onto waste Gossypium hirsutum seed microwave-bichar using response surface methodology and artificial neural networks. In: Intelligent Computing, Instrumentation and Control Technologies (ICICICT), 2017 international conference on IEEE, pp 1631–1635

    Google Scholar 

  • Sivarajasekar N, Mohanraj N, Sivamani S, Moorthy GI (2017d) Response surface methodology approach for optimization of lead (II) adsorptive removal by Spirogyra sp. biomass. J Environ Biotechnol Res 6:88–95

    Google Scholar 

  • Sivarajasekar N, Paramasivan T, Muthusaravanan S et al (2017e) Defluoridation of water using adsorbents – a concise review. J Environ Biotechnol Res 6:186–198

    Google Scholar 

  • Sivarajasekar N, Balasubramani K, Baskar R, Sivamani S, Ganesh Moorthy I (2018a) Eco-friendly acetaminophen sequestration using waste cotton seeds: equilibrium, optimization and validation studies. J Water Chem Technol 40:334–342

    Article  Google Scholar 

  • Sivarajasekar N, Baskar R (2018b) Optimization, equilibrium and kinetic studies of basic red 2 removal onto waste Gossypium hirsutum seeds. Iran J Chem Chem Eng 37:157–169

    Google Scholar 

  • Snyder RD (1971) Congenital mercury poisoning. N Engl J Med 284:1014–1016

    Article  CAS  Google Scholar 

  • Sreekrishnan TR, Tyagi RD, Blais JF, Campbell PGC (1993) Kinetics of heavy metal bioleaching from sewage sludge—I. Effects of process parameters. Water Res 27:1641–1651

    Article  CAS  Google Scholar 

  • Sricoth T, Meeinkuirt W, Saengwilai P et al (2018) Aquatic plants for phytostabilization of cadmium and zinc in hydroponic experiments. Environ Sci Pollut Res 25:14964–14976

    Article  CAS  Google Scholar 

  • Su Y, Han FX, Sridhar BBM, Monts DL (2005) Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fern. Environ Toxicol Chem 24:2019–2026. https://doi.org/10.1897/04-329R.1

    Article  CAS  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H et al (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  • Thangavel P, Subbhuraam CV (2004) Phytoextraction: role of hyperaccumulators in metal contaminated soils. Proc Indian Natl Sci Acad Part B 70:109–130

    CAS  Google Scholar 

  • Tiedje JM, Mason BB (1974) Biodegradation of Nitrilotriacetate (NTA) in Soils 1. Soil Sci Soc Am J 38:278–283

    Article  CAS  Google Scholar 

  • van der Zaal BJ, Neuteboom LW, Pinas JE et al (1999) Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1056

    Article  Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  • Venkatesh NM, Vedaraman N (2012) Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann Microbiol 62:85–91

    Article  CAS  Google Scholar 

  • Wang H, Lu S, Yao Z (2007) EDTA-enhanced phytoremediation of lead contaminated soil by Bidens maximowicziana. J Environ Sci 19:1496–1499

    Article  CAS  Google Scholar 

  • Weber E (2017) Invasive plant species of the world: a reference guide to environmental weeds. CABI, Wallingford

    Book  Google Scholar 

  • Wenger K, Kayser A, Gupta SK et al (2002) Comparison of NTA and elemental sulfur as potential soil amendments in phytoremediation. Soil Sediment Contam 11:655–672. https://doi.org/10.1080/20025891107023

    Article  CAS  Google Scholar 

  • Wiszniewska A, Hanus-Fajerska E, Muszyńska E, Ciarkowska K (2016) Natural organic amendments for improved phytoremediation of polluted soils: a review of recent progress. Pedosphere 26:1–12

    Article  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780. https://doi.org/10.1016/S0045-6535(02)00232-1

    Article  CAS  Google Scholar 

  • Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102:307–318

    Article  CAS  Google Scholar 

  • Xiaoyong HLSGQ (2006) A study on root expansibility of seven constructed wetland plants [J]. Shanghai Environ Sci 4:11

    Google Scholar 

  • Yan G, Viraraghavan T (2001) Heavy metal removal in a biosorption column by immobilized M. rouxii biomass. Bioresour Technol 78:243–249

    Article  CAS  Google Scholar 

  • Zeng Z, Li T-Q, Zhao F et al (2013) Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. J Zhejiang Univ Sci B 14:1152–1161

    Article  CAS  Google Scholar 

  • Zeng P, Guo Z, Cao X et al (2018) Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int J Phytoremediation 20:311–320

    Article  CAS  Google Scholar 

  • Zhu YL (1999) Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

  • Zhu YL, Zayed AM, Qian JH et al (1999) Phytoaccumulation of trace elements by wetland plants: II. Water Hyacinth. J Environ Qual 28:339–344. https://doi.org/10.2134/jeq1999.00472425002800010042x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muthusaravanan, S. et al. (2020). Research Updates on Heavy Metal Phytoremediation: Enhancements, Efficient Post-harvesting Strategies and Economic Opportunities. In: Naushad, M., Lichtfouse, E. (eds) Green Materials for Wastewater Treatment. Environmental Chemistry for a Sustainable World, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-17724-9_9

Download citation

Publish with us

Policies and ethics