Skip to main content

Neuromuscular Disorders and Noncompaction Cardiomyopathy

  • Chapter
  • First Online:
Noncompaction Cardiomyopathy
  • 382 Accesses

Abstract

Noncompaction cardiomyopathy (NCCM), also known as left ventricular hypertrabeculation (LVHT), occurs with an increased prevalence in patients with a neuromuscular disorder (NMD). The first NMD patient with LVHT was a patient with Becker muscular dystrophy, reported in 1996. Since then, LVHT was found in a number of other NMDs. The most prevalent of the NMDs are mitochondrial disorders (MIDs), myotonic dystrophy type-1 (MD1), dystrophinopathies, Barth syndrome, titinopathies, and laminopathies: The NMDs in which LVHT has been reported most frequently so far are MIDs, dystrophinopathies, Barth syndrome, and MD1. Mutated genes detected in LVHT patients with a NMD include DMD, TAZ, DTNA, mtDNA genes (ND1, tRNA(Leu), COX3, ND4), LDB3, DMPK, LMNA, AMPD1, PMP22, MYH7, CNBP, GLA, RYR1, DNAJC19, MYH7B, LAMP2, TTN, GARS, SDHD, HADHB, PLEC1, MIPEP, and POMPT2. Since NMDs present frequently with LVHT and since LVHT is associated with complications and the outcome of LVHT patients depends on the presence/absence of an NMD, it is essential that all patients with a NMD are prospectively investigated for LVHT and that all patients with LVHT are prospectively investigated for a NMD. Management of LVHT depends on the presence/absence of a NMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finsterer J. Cardio genetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatr Cardiol. 2009;30:659–81.

    Article  Google Scholar 

  2. Stöllberger C, Finsterer J, Blazek G, Bittner RE. Left ventricular non-compaction in a patient with Becker’s muscular dystrophy. Heart. 1996;76:380.

    Article  Google Scholar 

  3. Kimura K, Takenaka K, Ebihara A, Uno K, Morita H, Nakajima T, Ozawa T, Aida I, Yonemochi Y, Higuchi S, Motoyoshi Y, Mikata T, Uchida I, Ishihara T, Komori T, Kitao R, Nagata T, Takeda S, Yatomi Y, Nagai R, Komuro I. Prognostic impact of left ventricular noncompaction in patients with Duchenne/Becker muscular dystrophy–prospective multicenter cohort study. Int J Cardiol. 2013;168:1900–4.

    Article  Google Scholar 

  4. Bleyl SB, Mumford BR, Thompson V, Carey JC, Pysher TJ, Chin TK, Ward K. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am J Hum Genet. 1997;61:868–72.

    Article  CAS  Google Scholar 

  5. Finsterer J, Stöllberger C. Hypertrabeculated left ventricle in mitochondriopathy. Heart. 1998;80:632.

    Article  CAS  Google Scholar 

  6. Ichida F, Tsubata S, Bowles KR, Haneda N, Uese K, Miyawaki T, Dreyer WJ, Messina J, Li H, Bowles NE, Towbin JA. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation. 2001;103:1256–63.

    Article  CAS  Google Scholar 

  7. Xing Y, Ichida F, Matsuoka T, Isobe T, Ikemoto Y, Higaki T, Tsuji T, Haneda N, Kuwabara A, Chen R, Futatani T, Tsubata S, Watanabe S, Watanabe K, Hirono K, Uese K, Miyawaki T, Bowles KR, Bowles NE, Towbin JA. Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab. 2006;88:71–7.

    Article  CAS  Google Scholar 

  8. Finsterer J, Stöllberger C, Kopsa W. Noncompaction on cardiac MRI in a patient with nail-patella syndrome and mitochondriopathy. Cardiology. 2003;100:48–9.

    Article  Google Scholar 

  9. Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, Perles Z, Sinagra G, Lin JH, Vu TM, Zhou Q, Bowles KR, Di Lenarda A, Schimmenti L, Fox M, Chrisco MA, Murphy RT, McKenna W, Elliott P, Bowles NE, Chen J, Valle G, Towbin JA. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol. 2003;42:2014–27.

    Article  CAS  Google Scholar 

  10. Xi Y, Ai T, De Lange E, Li Z, Wu G, Brunelli L, Kyle WB, Turker I, Cheng J, Ackerman MJ, Kimura A, Weiss JN, Qu Z, Kim JJ, Faulkner G, Vatta M. Loss of function of hNav1.5 by a ZASP1 mutation associated with intraventricular conduction disturbances in left ventricular noncompaction. Circ Arrhythm Electrophysiol. 2012;5:1017–26.

    Article  CAS  Google Scholar 

  11. Hachiya A, Motoki N, Akazawa Y, Matsuzaki S, Hirono K, Hata Y, Nishida N, Ichida F, Koike K. Left ventricular non-compaction revealed by aortic regurgitation due to Kawasaki disease in a boy with LDB3 mutation. Pediatr Int. 2016;58:797–800.

    Article  CAS  Google Scholar 

  12. Stöllberger C, Winkler-Dworak M, Blazek G, Finsterer J. Left ventricular hypertrabeculation/noncompaction with and without neuromuscular disorders. Int J Cardiol. 2004;97:89–92.

    Article  Google Scholar 

  13. Choudhary P, Nandakumar R, Greig H, Broadhurst P, Dean J, Puranik R, Celermajer DS, Hillis GS. Structural and electrical cardiac abnormalities are prevalent in asymptomatic adults with myotonic dystrophy. Heart. 2016;102:1472–8.

    Article  CAS  Google Scholar 

  14. Finsterer J, Stöllberger C, Wegmann R, Janssen LA. Acquired left ventricular hypertrabeculation/noncompaction in myotonic dystrophy type 1. Int J Cardiol. 2009;137:310–3.

    Article  CAS  Google Scholar 

  15. Sá MI, Cabral S, Costa PD, Coelho T, Freitas M, Torres S, Gomes JL. Cardiac involveent in type 1 myotonic dystrophy. Rev Port Cardiol. 2007;26:829–40.

    PubMed  Google Scholar 

  16. Finsterer J, Stöllberger C, Kopsa W, Jaksch M. Wolff-Parkinson-White syndrome and isolated left ventricular abnormal trabeculation as a manifestation of Leber’s hereditary optic neuropathy. Can J Cardiol. 2001;17:464–6.

    CAS  PubMed  Google Scholar 

  17. Finsterer J, Stöllberger C, Michaela J. Familial left ventricular hypertrabeculation in two blind brothers. Cardiovasc Pathol. 2002;11:146–8.

    Article  Google Scholar 

  18. Hermida-Prieto M, Monserrat L, Castro-Beiras A, Laredo R, Soler R, Peteiro J, Rodríguez E, Bouzas B, Alvarez N, Muñiz J, Crespo-Leiro M. Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am J Cardiol. 2004;94:50–4.

    Article  Google Scholar 

  19. Liu Z, Shan H, Huang J, Li N, Hou C, Pu J. A novel lamin A/C gene missense mutation (445 V > E) in immunoglobulin-like fold associated with left ventricular non-compaction. Europace. 2016;18:617–22.

    Article  Google Scholar 

  20. Finsterer J, Schoser B, Stöllberger C. Myoadenylate-deaminase gene mutation associated with left ventricular hypertrabeculation/non-compaction. Acta Cardiol. 2004;59:453–6.

    Article  Google Scholar 

  21. Finsterer J, Gelpi E, Stöllberger C. Left ventricular hypertrabeculation/noncompaction as a cardiac manifestation of Duchenne muscular dystrophy under non-invasive positive-pressure ventilation. Acta Cardiol. 2005;60:445–8.

    Article  Google Scholar 

  22. Corrado G, Checcarelli N, Santarone M, Stollberger C, Finsterer J. Left ventricular hypertrabeculation/noncompaction with PMP22 duplication-based Charcot-Marie-Tooth disease type 1A. Cardiology. 2006;105:142–5.

    Article  Google Scholar 

  23. Finsterer J, Brandau O, Stöllberger C, Wallefeld W, Laing NG, Laccone F. Distal myosin heavy chain-7 myopathy due to the novel transition c.5566G>A (p.E1856K) with high interfamilial cardiac variability and putative anticipation. Neuromuscul Disord. 2014;24:721–5.

    Article  Google Scholar 

  24. Ruggiero L, Fiorillo C, Gibertini S, De Stefano F, Manganelli F, Iodice R, Vitale F, Zanotti S, Galderisi M, Mora M, Santoro L. A rare mutation in MYH7 gene occurs with overlapping phenotype. Biochem Biophys Res Commun. 2015;457:262–6.

    Article  CAS  Google Scholar 

  25. Alter P, Maisch B. Non-compaction cardiomyopathy in an adult with hereditary spherocytosis. Eur J Heart Fail. 2007;9:98–9.

    Article  Google Scholar 

  26. Wahbi K, Meune C, Bassez G, Laforêt P, Vignaux O, Marmursztejn J, Bécane HM, Eymard B, Duboc D. Left ventricular non-compaction in a patient with myotonic dystrophy type 2. Neuromuscul Disord. 2008;18:331–3.

    Article  Google Scholar 

  27. Thevathasan W, Squier W, MacIver DH, Hilton DA, Fathers E, Hilton-Jones D. Oculopharyngodistal myopathy–a possible association with cardiomyopathy. Neuromuscul Disord. 2011;21:121–5.

    Article  Google Scholar 

  28. Lee YC, Chang CJ, Bali D, Chen YT, Yan YT. Glycogen-branching enzyme deficiency leads to abnormal cardiac development: novel insights into glycogen storage disease IV. Hum Mol Genet. 2011;20:455–65.

    Article  CAS  Google Scholar 

  29. Azevedo O, Gaspar P, Sá Miranda C, Cunha D, Medeiros R, Lourenço A. Left ventricular noncompaction in a patient with fabry disease: overdiagnosis, morphological manifestation of fabry disease or two unrelated rare conditions in the same patient. Cardiology. 2011;119:155–9.

    Article  Google Scholar 

  30. Martins E, Pinho T, Carpenter S, Leite S, Garcia R, Madureira A, Oliveira JP. Histopathological evidence of Fabry disease in a female patient with left ventricular noncompaction. Rev Port Cardiol. 2014;33:565.e1–6.

    Article  Google Scholar 

  31. Finsterer J, Stöllberger C, Vlckova Z, Gencik M. On the edge of noncompaction: minimally manifesting Duchenne carrier due to the dystrophin mutation n.2867A>C. Int J Cardiol. 2013;165:e18–20.

    Article  Google Scholar 

  32. Şimşek Z, Açar G, Akçakoyun M, Esen Ö, Emiroğlu Y, Esen AM. Left ventricular noncompaction in a patient with multiminicore disease. J Cardiovasc Med. 2012;13:660–2.

    Article  Google Scholar 

  33. Cosson L, Toutain A, Simard G, Kulik W, Matyas G, Guichet A, Blasco H, Maakaroun-Vermesse Z, Vaillant MC, Le Caignec C, Chantepie A, Labarthe F. Barth syndrome in a female patient. Mol Genet Metab. 2012;106:115–20.

    Article  CAS  Google Scholar 

  34. Ojala T, Polinati P, Manninen T, Hiippala A, Rajantie J, Karikoski R, Suomalainen A, Tyni T. New mutation of mitochondrial DNAJC19 causing dilated and noncompaction cardiomyopathy, anemia, ataxia, and male genital anomalies. Pediatr Res. 2012;72:432–7.

    Article  CAS  Google Scholar 

  35. Esposito T, Sampaolo S, Limongelli G, Varone A, Formicola D, Diodato D, Farina O, Napolitano F, Pacileo G, Gianfrancesco F, Di Iorio G. Digenic mutational inheritance of the integrin alpha 7 and the myosin heavy chain 7B genes causes congenital myopathy with left ventricular non-compact cardiomyopathy. Orphanet J Rare Dis. 2013;8:91. https://doi.org/10.1186/1750-1172-8-91.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Van Der Starre P, Deuse T, Pritts C, Brun C, Vogel H, Oyer P. Late profound muscle weakness following heart transplantation due to Danon disease. Muscle Nerve. 2013;47:135–7.

    Article  Google Scholar 

  37. Liu S, Bai Y, Huang J, Zhao H, Zhang X, Hu S, Wei Y. Do mitochondria contribute to left ventricular non-compaction cardiomyopathy? New findings from myocardium of patients with left ventricular non-compaction cardiomyopathy. Mol Genet Metab. 2013;109:100–6.

    Article  CAS  Google Scholar 

  38. Wang J, Zhu Q, Kong X, Hu B, Shi H, Liang B, Zhou M, Cao F. A combination of left ventricular hypertrabeculation/noncompaction and muscular dystrophy in a stroke patient. Int J Cardiol. 2014;174:e68–71.

    Article  Google Scholar 

  39. Miszalski-Jamka K, Jefferies JL, Mazur W, Głowacki J, Hu J, Lazar M, Gibbs RA, Liczko J, Kłyś J, Venner E, Muzny DM, Rycaj J, Białkowski J, Kluczewska E, Kalarus Z, Jhangiani S, Al-Khalidi H, Kukulski T, Lupski JR, Craigen WJ, Bainbridge MN. Novel genetic triggers and genotype-phenotype correlations in patients with left ventricular noncompaction. Circ Cardiovasc Genet. 2017;10:e001763. https://doi.org/10.1161/CIRCGENETICS.117.001763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chauveau C, Bonnemann CG, Julien C, Kho AL, Marks H, Talim B, Maury P, Arne-Bes MC, Uro-Coste E, Alexandrovich A, Vihola A, Schafer S, Kaufmann B, Medne L, Hübner N, Foley AR, Santi M, Udd B, Topaloglu H, Moore SA, Gotthardt M, Samuels ME, Gautel M, Ferreiro A. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease. Hum Mol Genet. 2014;23:980–91.

    Article  CAS  Google Scholar 

  41. Hastings R, de Villiers CP, Hooper C, Ormondroyd L, Pagnamenta A, Lise S, Salatino S, Knight SJ, Taylor JC, Thomson KL, Arnold L, Chatziefthimiou SD, Konarev PV, Wilmanns M, Ehler E, Ghisleni A, Gautel M, Blair E, Watkins H, Gehmlich K. Combination of whole genome sequencing, linkage, and functional studies implicates a missense mutation in titin as a cause of autosomal dominant cardiomyopathy with features of left ventricular noncompaction. Circ Cardiovasc Genet. 2016;9:426–35.

    Article  CAS  Google Scholar 

  42. Egan KR, Ralphe JC, Weinhaus L, Maginot KR. Just sinus bradycardia or something more serious? Case Rep Pediatr. 2013;2013:736164. https://doi.org/10.1155/2013/736164.

    Article  PubMed  PubMed Central  Google Scholar 

  43. McMillan HJ, Schwartzentruber J, Smith A, Lee S, Chakraborty P, Bulman DE, Beaulieu CL, Majewski J, Boycott KM, Geraghty MT. Compound heterozygous mutations in glycyl-tRNA synthetase are a proposed cause of systemic mitochondrial disease. BMC Med Genet. 2014;15:36.

    Article  Google Scholar 

  44. Alston CL, Ceccatelli Berti C, Blakely EL, Oláhová M, He L, McMahon CJ, Olpin SE, Hargreaves IP, Nolli C, McFarland R, Goffrini P, O’Sullivan MJ, Taylor RW. A recessive homozygous p.Asp92Gly SDHD mutation causes prenatal cardiomyopathy and a severe mitochondrial complex II deficiency. Hum Genet. 2015;134:869–79.

    Article  CAS  Google Scholar 

  45. Jain-Ghai S, Cameron JM, Al Maawali A, Blaser S, MacKay N, Robinson B, Raiman J. Complex II deficiency–a case report and review of the literature. Am J Med Genet A. 2013;161A:285–94.

    Article  Google Scholar 

  46. Ojala T, Nupponen I, Saloranta C, Sarkola T, Sekar P, Breilin A, Tyni T. Fetal left ventricular noncompaction cardiomyopathy and fatal outcome due to complete deficiency of mitochondrial trifunctional protein. Eur J Pediatr. 2015;174:1689–92.

    Article  CAS  Google Scholar 

  47. Villa CR, Ryan TD, Collins JJ, Taylor MD, Lucky AW, Jefferies JL. Left ventricular non-compaction cardiomyopathy associated with epidermolysis bullosa simplex with muscular dystrophy and PLEC1 mutation. Neuromuscul Disord. 2015;25:165–8.

    Article  Google Scholar 

  48. Eldomery MK, Akdemir ZC, Vögtle FN, Charng WL, Mulica P, Rosenfeld JA, Gambin T, Gu S, Burrage LC, Al Shamsi A, Penney S, Jhangiani SN, Zimmerman HH, Muzny DM, Wang X, Tang J, Medikonda R, Ramachandran PV, Wong LJ, Boerwinkle E, Gibbs RA, Eng CM, Lalani SR, Hertecant J, Rodenburg RJ, Abdul-Rahman OA, Yang Y, Xia F, Wang MC, Lupski JR, Meisinger C, Sutton VR. MIPEP recessive variants cause a syndrome of left ventricular non-compaction, hypotonia, and infantile death. Genome Med. 2016;8:106.

    Article  Google Scholar 

  49. Abdullah S, Hawkins C, Wilson G, Yoon G, Mertens L, Carter MT, Guerin A. Noncompaction cardiomyopathy in an infant with Walker-Warburg syndrome. Am J Med Genet A. 2017;173:3082–6.

    Article  Google Scholar 

  50. Budde BS, Binner P, Waldmüller S, Höhne W, Blankenfeldt W, Hassfeld S, Brömsen J, Dermintzoglou A, Wieczorek M, May E, Kirst E, Selignow C, Rackebrandt K, Müller M, Goody RS, Vosberg HP, Nürnberg P, Scheffold T. Noncompaction of the ventricular myocardium is associated with a de novo mutation in the beta-myosin heavy chain gene. PLoS One. 2007;2:e1362.

    Article  Google Scholar 

  51. Mavrogeni SI, Markousis-Mavrogenis G, Papavasiliou A, Papadopoulos G, Kolovou G. Cardiac involvement in Duchenne muscular dystrophy and related dystrophinopathies. Methods Mol Biol. 2018;1687:31–42.

    Article  CAS  Google Scholar 

  52. Finsterer J, Stöllberger C, Wexberg P, Schukro C. Left ventricular hypertrabeculation/non-compaction in a Duchenne/Becker muscular dystrophy carrier with epilepsy. Int J Cardiol. 2012;162:e3–5.

    Article  Google Scholar 

  53. Statile CJ, Taylor MD, Mazur W, Cripe LH, King E, Pratt J, Benson DW, Hor KN. Left ventricular noncompaction in Duchenne muscular dystrophy. J Cardiovasc Magn Reson. 2013;15:67. https://doi.org/10.1186/1532-429X-15-67.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schelhorn J, Schoenecker A, Neudorf U, Schemuth H, Nensa F, Nassenstein K, Forsting M, Schara U, Schlosser T. Cardiac pathologies in female carriers of Duchenne muscular dystrophy assessed by cardiovascular magnetic resonance imaging. Eur Radiol. 2015;25:3066–72.

    Article  Google Scholar 

  55. Ferreira C, Thompson R, Vernon H. Barth syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A, editors. GeneReviews®. Seattle: University of Washington; 2014.

    Google Scholar 

  56. Ronvelia D, Greenwood J, Platt J, Hakim S, Zaragoza MV. Intrafamilial variability for novel TAZ gene mutation: Barth syndrome with dilated cardiomyopathy and heart failure in an infant and left ventricular noncompaction in his great-uncle. Mol Genet Metab. 2012;107:428–32.

    Article  CAS  Google Scholar 

  57. Thiels C, Fleger M, Huemer M, Rodenburg RJ, Vaz FM, Houtkooper RH, Haack TB, Prokisch H, Feichtinger RG, Lücke T, Mayr JA, Wortmann SB. Atypical clinical presentations of TAZ mutations: an underdiagnosed cause of growth retardation? JIMD Rep. 2016;29:89–93.

    PubMed  PubMed Central  Google Scholar 

  58. Wang C, Hata Y, Hirono K, Takasaki A, Ozawa SW, Nakaoka H, Saito K, Miyao N, Okabe M, Ibuki K, Nishida N, Origasa H, Yu X, Bowles NE, Ichida F, LVNC Study Collaborators. A Wide and specific spectrum of genetic variants and genotype-phenotype correlations revealed by next-generation sequencing in patients with left ventricular noncompaction. J Am Heart Assoc. 2017;6(9):e006210. https://doi.org/10.1161/JAHA.117.006210.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pignatelli RH, McMahon CJ, Dreyer WJ, Denfield SW, Price J, Belmont JW, Craigen WJ, Wu J, El Said H, Bezold LI, Clunie S, Fernbach S, Bowles NE, Towbin JA. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation. 2003;108:2672–8.

    Article  Google Scholar 

  60. Spencer CT, Bryant RM, Day J, Gonzalez IL, Colan SD, Thompson WR, Berthy J, Redfearn SP, Byrne BJ. Cardiac and clinical phenotype in Barth syndrome. Pediatrics. 2006;118:e337–46.

    Article  Google Scholar 

  61. Cao Q, Shen Y, Liu X, Yu X, Yuan P, Wan R, Liu X, Peng X, He W, Pu J, Hong K. Phenotype and functional analyses in a transgenic mouse model of left ventricular noncompaction caused by a DTNA mutation. Int Heart J. 2017;58:939–47.

    Article  CAS  Google Scholar 

  62. Tang S, Batra A, Zhang Y, Ebenroth ES, Huang T. Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion. 2010;10:350–7.

    Article  CAS  Google Scholar 

  63. Zarrouk Mahjoub S, Mehri S, Ourda F, Boussaada R, Mechmeche R, Arab SB, Finsterer J. Transition m.3308T>C in the ND1 gene is associated with left ventricular hypertrabeculation/noncompaction. Cardiology. 2011;118:153–8.

    Article  Google Scholar 

  64. Limongelli G, Tome-Esteban M, Dejthevaporn C, Rahman S, Hanna MG, Elliott PM. Prevalence and natural history of heart disease in adults with primary mitochondrial respiratory chain disease. Eur J Heart Fail. 2010;12:114–21.

    Article  CAS  Google Scholar 

  65. Finsterer J, Stöllberger C, Steger C, Cozzarini W. Complete heart block associated with noncompaction, nail-patella syndrome, and mitochondrial myopathy. J Electrocardiol. 2007;40:352–4.

    Article  Google Scholar 

  66. MIPEP. Wikipedia. https://en.wikipedia.org/wiki/MIPEP. Accessed Jan 2018.

  67. Davili Z, Johar S, Hughes C, Kveselis D, Hoo J. Succinate dehydrogenase deficiency associated with dilated cardiomyopathy and ventricular noncompaction. Eur J Pediatr. 2007;166:867–70.

    Article  Google Scholar 

  68. Wang J, Kong X, Han P, Hu B, Cao F, Liu Y, Zhu Q. Combination of mitochondrial myopathy and biventricular hypertrabeculation/noncompaction. Neuromuscul Disord. 2016;26:165–9.

    Article  CAS  Google Scholar 

  69. Scaglia F, Towbin JA, Craigen WJ, Belmont JW, Smith EO, Neish SR, Ware SM, Hunter JV, Fernbach SD, Vladutiu GD, Wong LJ, Vogel H. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics. 2004;114:925–31.

    Article  Google Scholar 

  70. Yaplito-Lee J, Weintraub R, Jamsen K, Chow CW, Thorburn DR, Boneh A. Cardiac manifestations in oxidative phosphorylation disorders of childhood. J Pediatr. 2007;150:407–11.

    Article  CAS  Google Scholar 

  71. Dhar R, Reardon W, McMahon CJ. Biventricular non-compaction hypertrophic cardiomyopathy in association with congenital complete heart block and type I mitochondrial complex deficiency. Cardiol Young. 2015;25:1019–21.

    Article  Google Scholar 

  72. Stöllberger C, Blazek G, Gessner M, Bichler K, Wegner C, Finsterer J. Neuromuscular comorbidity, heart failure, and atrial fibrillation as prognostic factors in left ventricular hypertrabeculation/noncompaction. Herz. 2015;40:906–11.

    Article  Google Scholar 

  73. Worman HJ. Cell signaling abnormalities in cardiomyopathy caused by lamin A/C gene mutations. Biochem Soc Trans. 2017;46(1):37–42. https://doi.org/10.1042/BST20170236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rankin J, Auer-Grumbach M, Bagg W, Colclough K, Nguyen TD, Fenton-May J, Hattersley A, Hudson J, Jardine P, Josifova D, Longman C, McWilliam R, Owen K, Walker M, Wehnert M, Ellard S. Extreme phenotypic diversity and nonpenetrance in families with the LMNA gene mutation R644C. Am J Med Genet A. 2008;146A:1530–42.

    Article  CAS  Google Scholar 

  75. Parent JJ, Towbin JA, Jefferies JL. Left ventricular noncompaction in a family with lamin A/C gene mutation. Tex Heart Inst J. 2015;42:73–6.

    Article  Google Scholar 

  76. Sedaghat-Hamedani F, Haas J, Zhu F, Geier C, Kayvanpour E, Liss M, Lai A, Frese K, Pribe-Wolferts R, Amr A, Li DT, Samani OS, Carstensen A, Bordalo DM, Müller M, Fischer C, Shao J, Wang J, Nie M, Yuan L, Haßfeld S, Schwartz C, Zhou M, Zhou Z, Shu Y, Wang M, Huang K, Zeng Q, Cheng L, Fehlmann T, Ehlermann P, Keller A, Dieterich C, Streckfuß-Bömeke K, Liao Y, Gotthardt M, Katus HA, Meder B. Clinical genetics and outcome of left ventricular non-compaction cardiomyopathy. Eur Heart J. 2017;38:3449–60.

    Article  CAS  Google Scholar 

  77. Fiorillo C, Astrea G, Savarese M, Cassandrini D, Brisca G, Trucco F, Pedemonte M, Trovato R, Ruggiero L, Vercelli L, D’Amico A, Tasca G, Pane M, Fanin M, Bello L, Broda P, Musumeci O, Rodolico C, Messina S, Vita GL, Sframeli M, Gibertini S, Morandi L, Mora M, Maggi L, Petrucci A, Massa R, Grandis M, Toscano A, Pegoraro E, Mercuri E, Bertini E, Mongini T, Santoro L, Nigro V, Minetti C, Santorelli FM, Bruno C, Italian Network on Congenital Myopathies. MYH7-related myopathies: clinical, histopathological and imaging findings in a cohort of Italian patients. Orphanet J Rare Dis. 2016;11:91. https://doi.org/10.1186/s13023-016-0476-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tian T, Wang J, Wang H, Sun K, Wang Y, Jia L, Zou Y, Hui R, Zhou X, Song L. A low prevalence of sarcomeric gene variants in a Chinese cohort with left ventricular non-compaction. Heart Vessel. 2015;30:258–64.

    Article  Google Scholar 

  79. Finsterer J, Rudnik-Schöneborn S. Myotonic dystrophies: clinical presentation, pathogenesis, diagnostics and therapy. Fortschr Neurol Psychiatr. 2015;83:9–17.

    Article  Google Scholar 

  80. Münch G, Bölck B, Sugaru A, Brixius K, Bloch W, Schwinger RH. Increased expression of isoform 1 of the sarcoplasmic reticulum Ca(2+)-release channel in failing human heart. Circulation. 2001;103:2739–44.

    Article  Google Scholar 

  81. Finsterer J, Ramaciotti C, Wang CH, Wahbi K, Rosenthal D, Duboc D, Melacini P. Cardiac findings in congenital muscular dystrophies. Pediatrics. 2010;126:538–45.

    Article  Google Scholar 

  82. Stöllberger C, Blazek G, Gessner M, Bichler K, Wegner C, Finsterer J. Age-dependency of cardiac and neuromuscular findings in adults with left ventricular hypertrabeculation/noncompaction. Am J Cardiol. 2015;115:1287–92.

    Article  Google Scholar 

Download references

Acknowledgements

None

Conflicts of Interest

There are no conflicts of interest.

No funding was received.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Finsterer, J., Stöllberger, C. (2019). Neuromuscular Disorders and Noncompaction Cardiomyopathy. In: Caliskan, K., Soliman, O., ten Cate, F. (eds) Noncompaction Cardiomyopathy. Springer, Cham. https://doi.org/10.1007/978-3-030-17720-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17720-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17719-5

  • Online ISBN: 978-3-030-17720-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics