Skip to main content

Foot Reaction Analysis of Whole Body Dynamic via Screw Theory

  • Conference paper
  • First Online:
  • 621 Accesses

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 72))

Abstract

Whole body motion dynamic analysis is a complex job since the required parameters are not easy to obtain. This study proposes a method for determining the dynamic parameters of whole body. Then the wrench screw exerts on the body ($0) is computed by the Newton/Euler equations. The computing of single foot reaction wrench is trivial using screw theory. However, there is no single solution for double feet contact. Using linear dependency among the reactions of both feet and $0, there are 12 equations to solve 14 unknowns. The geometry of the reaction screws compose a general two-system, namely a cylindroid, is characterized by two parameters. Therefore, an optimal foot reactions can be computed under the assumption of minimum internal moment generated by the two contact screws.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yeadon, M.R., Morlock, M.: The appropriate use of regression equations for the estimation of segmental inertia parameters. J. Biomech. 22(6), 683–689 (1989)

    Article  Google Scholar 

  2. De Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29(9), 1223–1230 (1996)

    Article  Google Scholar 

  3. Pearsall, D.J., Reid, J.G., Ross, R.: Inertial properties of the human trunk of males determined from magnetic resonance imaging. Ann. Biomed. Eng. 22(6), 692–706 (1994)

    Article  Google Scholar 

  4. Lee, M.K., Koh, M., Fang, A.C., Le, S.N., Balasekaran, G.: Estimation of body segment parameters using dual energy absorptiometry and 3-D exterior geometry. In: 13th International conference on biomedical engineering, (pp. 1777–1780). Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  5. Norton, J., Donaldson, N., Dekker, L.: 3D whole body scanning to determine mass properties of legs. J. Biomech. 35(1), 81–86 (2002)

    Article  Google Scholar 

  6. Ensminger, G.J., Robertson, R.N., Cooper, R.A.: A model for determining 3-D upper extremity net joint forces and moments during wheelchair propulsion. In: IEEE 17th annual conference on engineering in medicine and biology society, vol. 2, pp. 1179–1180 (1995)

    Google Scholar 

  7. Liu, T., Inoue, Y., Shibata, K., Shiojima, K.: Three-dimensional lower limb kinematic and kinetic analysis based on a wireless sensor system. In: 2011 IEEE international conference on robotics and automation (ICRA), pp. 842–847

    Google Scholar 

  8. Nakamura, Y., Yamane, K., Fujita, Y., Suzuki, I. Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model. IEEE Trans Robot 21(1), 58–66 (2005)

    Article  Google Scholar 

  9. Tsai, M.J., Fang, J.J.: U.S. Patent No. 7,218,752. U.S. Patent and Trademark Office, Washington, DC (2007)

    Google Scholar 

  10. Tsai, M.J., Lung, H.Y.: Two-phase optimized inverse kinematics for motion replication of real human models. J. Chin. Inst. Eng. 37(7), 899–914 (2014)

    Article  Google Scholar 

  11. Tsai, M.J., Lee, A., Lee, H.W.: Automatic full body inverse dynamic analysis based on personalized body model and MoCap data. Adv. Mech., Robot. Des. Educ. Res., 305–322. Springer International Publishing (2013)

    Google Scholar 

  12. Vukobratovic, M., Juricic, D.: Contribution to the synthesis of biped gait. IEEE Trans. Biomed. Eng. 1, 1–6 (1969)

    Article  Google Scholar 

  13. Burnfield, M.: Gait analysis: normal and pathological function. J. Sport. Sci. Med. 9, 353 (2010)

    Google Scholar 

  14. Popovic, M.B., Goswami, A., Herr, H.: Ground reference points in legged locomotion: definitions, biological trajectories and control implications. Int. J. Robot. Res. 24(12), 1013–1032 (2005)

    Article  Google Scholar 

  15. Firmani, F., Park, E.J.: Theoretical analysis of the state of balance in bipedal walking. J. Biomech. Eng. 135(4), 041003 (2013)

    Article  Google Scholar 

  16. Ren, L., Jones, R.K., Howard, D.: Predictive modelling of human walking over a complete gait cycle. J. Biomech. 40(7), 1567–1574 (2007)

    Article  Google Scholar 

  17. Ren, L., Jones, R.K., Howard, D.: Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J. Biomech. 41(12), 2750–2759 (2008)

    Article  Google Scholar 

  18. Zatsiorsky, V.M.: Kinetics of Human Motion. Human Kinetics, Champaign, IL (2002)

    Google Scholar 

  19. Chang, C.H.: Numerical simulations for a 3D system composed of polyhedral blocks-dissection of polyhedral blocks. Master thesis of department of civil engineering, National Central University, Zhongli, Taiwan (2006)

    Google Scholar 

  20. Kane, T.R., Levinson, D.A.: Dynamics, Theory and Applications. McGraw Hill, New York (1985)

    Google Scholar 

  21. Carretero, J.A., Podhorodeski, R.P., Nahon, M.A., Gosselin, C.M.: Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator. J. Mech. Des. 122(1), 17–24 (2000)

    Article  Google Scholar 

  22. Fu, K.S., Gonzalez, R.C., Lee, C.G.: Robotics, pp. 163–189. McGraw-Hill, New York (1987)

    Google Scholar 

  23. Whitney, D.E.: The mathematics of coordinated control of prosthetic arms and manipulators. J. Dyn. Syst., Meas., Control. 94(4), 303–309 (1972)

    Article  Google Scholar 

  24. Hunt, K.: Kinematic Geometry of Mechanisms. Clarendon Press, Oxford (1978)

    MATH  Google Scholar 

  25. Phillips, J.: Freedom in Machinery: Screw Theory Exemplified, vol. 2. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  26. http://reference.wolfram.com/language/ref/NMinimize.html

Download references

Acknowledgements

The financial support from Ministry of Science and Technology of Taiwan through the grant number: MOST 105-2221-E-006-080, is greatly appreciative. The authors want to express our great thanks to Mr. Tseng, Chi-Juang, a grand master of Chinese Martial Art, who contributed precious actions in video recording that make this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-June Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsai, MJ., Yin, WS. (2019). Foot Reaction Analysis of Whole Body Dynamic via Screw Theory. In: (Chunhui) Yang, R., Takeda, Y., Zhang, C., Fang, G. (eds) Robotics and Mechatronics. ISRM 2017. Mechanisms and Machine Science, vol 72. Springer, Cham. https://doi.org/10.1007/978-3-030-17677-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17677-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17676-1

  • Online ISBN: 978-3-030-17677-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics