Skip to main content

Challenges, Regulations and Future Actions in Biofertilizers in the European Agriculture: From the Lab to the Field

  • Chapter
  • First Online:
Microbial Probiotics for Agricultural Systems

Abstract

Microorganisms have been used in agriculture for more than a century, beginning with the rhizobia inoculants and, more recently, the so-called plant growth-promoting rhizobacteria (PGPR). Generally, bacteria have proven to be a valid and useful biotechnology for crop production. In spite of the existing knowledge about functional aspects of the interaction between microorganisms and plants and their effects on plants growth, adoption of such products by farmers is still incipient in some regions of the world, especially in industrialised areas While in Asia and Latin America they are widespread, in Europe they are still emerging. This chapter analyses the challenges of the European sector, including: (i) avoiding inconsistences in field performance, and (ii) informing and training farmers about this technology. Emerging regulation in Europe are also examined. Last, it discusses the prospective actions to help overcome challenges while also staying within the current regulation guidelines, including: (i) searching for autochthonous strains, (ii) optimisation of the industrial production and formulation, (iii) development of techniques for precise strain identification in products, especially for non-sterile carriers, (iv) field experiments at the “farmers scale,” and (v) screening action mechanisms from a genetic viewpoint. This chapter reviews the scientific information about field trials from a critical standpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arif, M. S., Riaz, M., Shahzad, S. M., Yasmeen, T., Akhtar, M. J., Riaz, M. A., Jassey, V. E. J., Bragazza, L., & Buttler, A. (2016). Associative interplay of plant growth promoting rhizobacteria (Pseudomonas aeruginosa QS40) with nitrogen fertilizers improves sunflower (Helianthus annuus L.) productivity and fertility of aridisol. Applied Soil Ecology, 108, 238–247. https://doi.org/10.1016/j.apsoil.2016.08.016.

    Article  Google Scholar 

  • Arif, M. S., Shahzad, S. M., Riaz, M., Yasmeen, T., Shahzad, T., Akhtar, M. J., Bragazza, L., & Buttler, A. (2017). Nitrogen-enriched compost application combined with plant growth-promoting rhizobacteria (PGPR) improves seed quality and nutrient use efficiency of sunflower. Journal of Plant Nutrition and Soil Science, 180, 464–473. https://doi.org/10.1002/jpln.201600615.

    Article  CAS  Google Scholar 

  • Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J.-P. (2014). Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant and Soil, 378, 1–33. https://doi.org/10.1007/s11104-013-1956-x.

    Article  CAS  Google Scholar 

  • Bashan, Y., de-Bashan, L. E., & Prabhu, S. R. (2016). Superior polymeric formulations and emerging innovative products of bacterial inoculants for sustainable agriculture and the environment. In H. B. Singh, B. K. Sarma, & C. Keswani (Eds.), Agriculturally important microorganisms: Commercialization and regulatory requirements in Asia (pp. 15–46). Singapore: Springer.

    Chapter  Google Scholar 

  • Belimov, A. A., Dodd, I. C., Safronova, V. I., Shaposhnikov, A. I., Azarova, T. S., Makarova, N. M., Davies, W. J., & Tikhonovich, I. A. (2015). Rhizobacteria that produce auxins and contain 1-amino-cyclopropane-1-carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well-watered and water-limited potato ( Solanum tuberosum ). The Annals of Applied Biology, 167, 11–25. https://doi.org/10.1111/aab.12203.

    Article  CAS  Google Scholar 

  • Bhardwaj, D., Wahid Ansari, M., Kumar Sahoo, R., & Tuteja, N. (2014). Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories, 13(2014), 66. https://doi.org/10.1186/1475-2859-13-66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bharti, N., Barnawal, D., Shukla, S., Tewari, S. K., Katiyar, R. S., & Kalra, A. (2016a). Integrated application of Exiguobacterium oxidotolerans, Glomus fasciculatum, and vermicompost improves growth, yield and quality of Mentha arvensis in salt-stressed soils. Industrial Crops and Products, 83, 717–728. https://doi.org/10.1016/j.indcrop.2015.12.021.

    Article  Google Scholar 

  • Bharti, N., Barnawal, D., Wasnik, K., Tewari, S. K., & Kalra, A. (2016b). Co-inoculation of Dietzia natronolimnaea and Glomus intraradices with vermicompost positively influences Ocimum basilicum growth and resident microbial community structure in salt affected low fertility soils. Applied Soil Ecology, 100, 211–225. https://doi.org/10.1016/J.APSOIL.2016.01.003.

    Article  Google Scholar 

  • Cao, Y., Wang, E., Tong, W., Qiao, Y., Zhao, L., Chen, W., & Wei, G. (2017). Population structure of Rhizobium etli-like strains nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biology and Biochemistry, 112, 14–23. https://doi.org/10.1016/j.soilbio.2017.04.017.

    Article  CAS  Google Scholar 

  • Cassán, F., Vanderleyden, J., & Spaepen, S. (2014). Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation, 33, 440–459. https://doi.org/10.1007/s00344-013-9362-4.

    Article  CAS  Google Scholar 

  • Cely, M. V. T., Siviero, M. A., Emiliano, J., Spago, F. R., Freitas, V. F., Barazetti, A. R., Goya, E. T., Lamberti G de, S., dos Santos, I. M. O., De Oliveira, A. G., & Andrade, G. (2016). Inoculation of Schizolobium parahyba with mycorrhizal fungi and plant growth-promoting rhizobacteria increases wood yield under field conditions. Frontiers in Plant Science, 22. https://doi.org/10.3389/fpls.2016.01708.

  • Chauhan, H., & Bagyaraj, D. J. (2015). Inoculation with selected microbial consortia not only enhances growth and yield of french bean but also reduces fertilizer application under field condition. Scientia Horticulturae (Amsterdam), 197, 441–446. https://doi.org/10.1016/j.scienta.2015.10.001.

    Article  Google Scholar 

  • Choudhary, D. K., Sharma, K. P., & Gaur, R. K. (2011). Biotechnological perspectives of microbes in agro-ecosystems. Biotechnology Letters, 33, 1905–1910. https://doi.org/10.1007/s10529-011-0662-0.

    Article  CAS  PubMed  Google Scholar 

  • Dal Cortivo, C., Barion, G., Visioli, G., Mattarozzi, M., Mosca, G., & Vamerali, T. (2017). Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: Assessment of plant-microbe interactions by ESEM. Agriculture, Ecosystems and Environment, 247, 396–408. https://doi.org/10.1016/j.agee.2017.07.006.

    Article  CAS  Google Scholar 

  • Daza, A., Santamarıa, C., Rodrıguez-Navarro, D., Camacho, M., Orive, R., & Temprano, F. (2000). Perlite as a carrier for bacterial inoculants. Soil Biology and Biochemistry, 32, 567–572. https://doi.org/10.1016/S0038-0717(99)00185-6.

    Article  CAS  Google Scholar 

  • Di Salvo, L. P., Cellucci, G. C., Carlino, M. E., & García de Salamone, I. E. (2018). Plant growth-promoting rhizobacteria inoculation and nitrogen fertilization increase maize (Zea mays L.) grain yield and modified rhizosphere microbial communities. Applied Soil Ecology, 126, 113–120. https://doi.org/10.1016/j.apsoil.2018.02.010.

    Article  Google Scholar 

  • Díaz-Alcántara, C. A., Ramírez-Bahena, M. H., Mulas, D., García-Fraile, P., Gómez-Moriano, A., Peix, A., Velázquez, E., & González-Andrés, F. (2014). Analysis of rhizobial strains nodulating Phaseolus vulgaris from Hispaniola island, a geographic bridge between Meso and South America and the first historical link with Europe. Systematic and Applied Microbiology, 67, 113–124. https://doi.org/10.1016/j.syapm.2013.09.005.

    Article  Google Scholar 

  • Dinesh, R., Anandaraj, M., Kumar, A., Bini, Y. K., Subila, K. P., & Aravind, R. (2015). Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiological Research, 173, 34–43. https://doi.org/10.1016/j.micres.2015.01.014.

    Article  PubMed  Google Scholar 

  • Djedidi, S., Terasaki, A., Aung, H. P., Kojima, K., Yamaya, H., Ohkama-Ohtsu, N., Bellingrath-Kimura, S. D., Meunchang, P., & Yokoyama, T. (2015). Evaluation of the possibility to use the plant–microbe interaction to stimulate radioactive 137Cs accumulation by plants in a contaminated farm field in Fukushima, Japan. Journal of Plant Research, 128, 147–159. https://doi.org/10.1007/s10265-014-0678-3.

    Article  CAS  PubMed  Google Scholar 

  • Du, C., Abdullah, J. J., Greetham, D., Fu, D., Yu, M., Ren, L., Li, S., & Lu, D. (2018). Valorization of food waste into biofertiliser and its field application. Journal of Cleaner Production, 187, 273–284. https://doi.org/10.1016/J.JCLEPRO.2018.03.211.

    Article  CAS  Google Scholar 

  • Dubey, S. C., Singh, V., Priyanka, K., Upadhyay, B. K., & Singh, B. (2015). Combined application of fungal and bacterial bio-agents, together with fungicide and Mesorhizobium for integrated management of Fusarium wilt of chickpea. BioControl, 60, 413–424. https://doi.org/10.1007/s10526-015-9653-8.

    Article  CAS  Google Scholar 

  • Etesami, H., & Maheshwari, D. K. (2018). Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 156, 225–246. https://doi.org/10.1016/J.ECOENV.2018.03.013.

    Article  CAS  PubMed  Google Scholar 

  • Gao, M., Zhou, J. J., Wang, E. T., Chen, Q., Xu, J., & Sun, J. G. (2015). Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field. Journal of Integrative Agriculture, 14, 1855–1863. https://doi.org/10.1016/S2095-3119(14)60932-1.

    Article  CAS  Google Scholar 

  • García-Fraile, P., Mulas-García, D., Peix, A., Rivas, R., González-Andrés, F., & Velázquez, E. (2010). Phaseolus vulgaris is nodulated in northern Spain by Rhizobium leguminosarum strains harboring two nodC alleles present in american Rhizobium etli strains: Biogeographical and evolutionary implications. Canadian Journal of Microbiology, 56, 657–666. https://doi.org/10.1139/w10-048.

    Article  PubMed  Google Scholar 

  • Hassan, T., & Bano, A. (2015). The stimulatory effects of L-tryptophan and plant growth promoting rhizobacteria (PGPR) on soil health and physiology of wheat. Journal of Soil Science and Plant Nutrition, 15(1), 190–201. https://doi.org/10.4067/S0718-95162015005000016.

    Article  Google Scholar 

  • Herrmann, L., & Lesueur, D. (2013). Challenges of formulation and quality of biofertilizers for successful inoculation. Applied Microbiology and Biotechnology, 97, 8859–8873. https://doi.org/10.1007/s00253-013-5228-8.

    Article  CAS  PubMed  Google Scholar 

  • Hong, S. H., & Lee, E. Y. (2017). Phytostabilization of salt accumulated soil using plant and biofertilizers: Field application. International Biodeterioration and Biodegradation, 124, 188–195. https://doi.org/10.1016/j.ibiod.2017.05.001.

    Article  CAS  Google Scholar 

  • Hungria, M., Campo, R. J., & Mendes, I. C. (2003). Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biology and Fertility of Soils, 39, 88–93. https://doi.org/10.1007/s00374-003-0682-6.

    Article  Google Scholar 

  • IEEP, Ecologic and GHK. (2012). Study to analyse legal and economic aspects of implementing the Nagoya Protocol on ABS in the European Union. Final report for the European Commission, DG Environment, Institute for European Environmental Policy, Brussels and London.

    Google Scholar 

  • Jatan, R., Chauhan, P. S., & Lata, C. (2018). Pseudomonas putida modulates the expression of miRNAs and their target genes in response to drought and salt stresses in chickpea (Cicer arietinum L.). Genomics. (in press).

    Google Scholar 

  • Kaushal, M., & Wani, S. P. (2016). Rhizobacterial-plant interactions: Strategies ensuring plant growth promotion under drought and salinity stress. Agriculture, Ecosystems and Environment, 231, 68–78.

    Article  CAS  Google Scholar 

  • Kumar, A., Maurya, B. R., Raghuwanshi, R., Meena, V. S., & Tofazzal Islam, M. (2017). Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-Gangetic plain of India. Journal of Plant Growth Regulation, 36, 608–617. https://doi.org/10.1007/s00344-016-9663-5.

    Article  CAS  Google Scholar 

  • Kuzmicheva, Y. V., Shaposhnikov, A. I., Petrova, S. N., Makarova, N. M., Tychinskaya, I. L., Puhalsky, J. V., Parahin, N. V., Tikhonovich, I. A., & Belimov, A. A. (2017). Variety specific relationships between effects of rhizobacteria on root exudation, growth and nutrient uptake of soybean. Plant and Soil, 419, 83–96. https://doi.org/10.1007/s11104-017-3320-z.

    Article  CAS  Google Scholar 

  • Lally, R. D., Galbally, P., Moreira, A. S., Spink, J., Ryan, D., Germaine, K. J., & Dowling, D. N. (2017). Application of endophytic Pseudomonas fluorescens and a bacterial consortium to Brassica napus can increase plant height and biomass under greenhouse and field conditions. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02193.

  • Le, T. A., Pék, Z., Takács, S., Neményi, A., Daood, H. G., & Helyes, L. (2018). The effect of plant growth promoting rhizobacteria on the water-yield relationship and carotenoid production of processing tomatoes. Hortscience, 53, 816–822. https://doi.org/10.21273/HORTSCI13048-18.

    Article  CAS  Google Scholar 

  • Ma, M., Jiang, X., Wang, Q., Guan, D., Li, L., Ongena, M., & Li, J. (2018). Isolation and identification of PGPR strain and its effect on soybean growth and soil bacterial community composition. International Journal of Agriculture and Biology, 20, 1289–1297. https://doi.org/10.17957/IJAB/15.0627.

    Article  CAS  Google Scholar 

  • Mahmood, S., Daur, I., Al-Solaimani, S. G., Ahmad, S., Madkour, M. H., Yasir, M., Hirt, H., Ali, S., & Ali, Z. (2016). Plant growth promoting rhizobacteria and silicon synergistically enhance salinity tolerance of mung bean. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00876.

  • Mahmoud, E., El-Gizawy, E., & Geries, L. (2015). Effect of compost extract, N2-fixing bacteria and nitrogen levels applications on soil properties and onion crop. Archives of Agronomy and Soil Science, 61(2), 185–201. https://doi.org/10.1080/03650340.2014.928409.

    Article  Google Scholar 

  • Marasco, R., Rolli, E., Fusi, M., Cherif, A., Abou-Hadid, A., El-Bahairy, U., Borin, S., Sorlini, C., & Daffonchio, D. (2013). Plant growth promotion potential is equally represented in diverse grapevine root-associated bacterial communities from different biopedoclimatic environments. BioMed Research International, 2013, 1–17. https://doi.org/10.1155/2013/491091.

    Article  CAS  Google Scholar 

  • Marcano, I. E., Díaz-Alcántara, C. A., Urbano, B., & González-Andrés, F. (2016). Assessment of bacterial populations associated with banana tree roots and development of successful plant probiotics for banana crop. Soil Biology and Biochemistry, 99, 1–20. https://doi.org/10.1016/j.soilbio.2016.04.013.

    Article  Google Scholar 

  • Martínez-Viveros, O., Jorquera, M., Crowley, D., Gajardo, G., & Mora, M. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition, 10, 293–319. https://doi.org/10.4067/S0718-95162010000100006.

    Article  Google Scholar 

  • Mekki, A., Arous, F., Aloui, F., & Sayadi, S. (2017). Treatment and valorization of agro-wastes as biofertilizers. Waste and Biomass Valorization, 8, 611–619. https://doi.org/10.1007/s12649-016-9620-3.

    Article  CAS  Google Scholar 

  • Morrissey JP, Dow JM, Louise G, Fergal M&, Gara O’ (2004) Are microbes at the root of a solution to world food production? Rational exploitation of interactions between microbes and plants can help to transform agriculture. EMBO Reports 5:922–926. doi: https://doi.org/10.1038/sj.embor.7400263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostasso, L., Mostasso, F. L., Dias, B. G., Vargas, M. A., & Hungria, M. (2002). Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crops Research, 73, 121–132. https://doi.org/10.1016/S0378-4290(01)00186-1.

    Article  Google Scholar 

  • Mrabet, M., Mhamdi, R., Tajini, F., Tiwari, R., Trabelsi, M., & Aouani, M. E. (2005). Competitiveness and symbiotic effectiveness of a R. gallicum strain isolated from root nodules of Phaseolus vulgaris. European Journal of Agronomy, 22, 209–216. https://doi.org/10.1016/J.EJA.2004.02.006.

    Article  Google Scholar 

  • Mukhtar, S., Shahid, I., Mehnaz, S., & Malik, K. A. (2017). Assessment of two carrier materials for phosphate solubilizing biofertilizers and their effect on growth of wheat (Triticum aestivum L.). Microbiological Research, 205, 107–117. https://doi.org/10.1016/j.micres.2017.08.011.

    Article  CAS  PubMed  Google Scholar 

  • Mulas, D., García-Fraile, P., Carro, L., Ramírez-Bahena, M. H., Casquero, P., Velázquez, E., & González-Andrés, F. (2011). Distribution and efficiency of Rhizobium leguminosarum strains nodulating Phaseolus vulgaris in northern spanish soils: Selection of native strains that replace conventional N fertilization. Soil Biology and Biochemistry, 43, 2283–2293. https://doi.org/10.1016/j.soilbio.2011.07.018.

    Article  CAS  Google Scholar 

  • Mulas, D., Díaz-Alcántara, C. A., Mulas, R., Marcano, I., Barquero, M., Serrano, P., & González-Andrés, F. (2013). Inoculants based in autochthonous microorganisms, a strategy to optimize agronomic performance of biofertilizers. In M. B. Rodelas González & J. Gonzalez-López (Eds.), Beneficial plant-microbial interactions: Ecology and applications. Boca Raton: CRS Press.

    Google Scholar 

  • Mulas, D., Seco, V., Casquero, P. A., Velázquez, E., & González-Andrés, F. (2015). Inoculation with indigenous rhizobium strains increases yields of common bean (Phaseolus vulgaris L.) in northern Spain, although its efficiency is affected by the tillage system. Symbiosis, 67, 113–124. https://doi.org/10.1007/s13199-015-0359-6.

    Article  CAS  Google Scholar 

  • Nosheen, A., Bano, A., Yasmin, H., Keyani, R., Habib, R., Shah, S. T. A., & Naz, R. (2016). Protein quantity and quality of safflower seed improved by NP fertilizer and rhizobacteria (Azospirillum and Azotobacter spp.). Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00104.

  • Pastor-Bueis, R., Mulas, R., Gómez, X., & González-Andrés, F. (2017). Innovative liquid formulation of digestates for producing a biofertilizer based on Bacillus siamensis: Field testing on sweet pepper. Journal of Plant Nutrition and Soil Science, 180, 748–758. https://doi.org/10.1002/jpln.201700200.

    Article  CAS  Google Scholar 

  • Prakamhang, J., Tittabutr, P., Boonkerd, N., Teamtisong, K., Uchiumi, T., Abe, M., & Teaumroong, N. (2015). Proposed some interactions at molecular level of PGPR coinoculated with Bradyrhizobium diazoefficiens USDA110 and B. japonicum THA6 on soybean symbiosis and its potential of field application. Applied Soil Ecology, 85, 38–49. https://doi.org/10.1016/j.apsoil.2014.08.009.

    Article  Google Scholar 

  • Qin, Y., Druzhinina, I. S., Pan, X., & Yuan, Z. (2016). Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnology Advances, 34, 1245–1259. https://doi.org/10.1016/J.BIOTECHADV.2016.08.005.

    Article  CAS  PubMed  Google Scholar 

  • Reddy Priya, P., Selastin Antony, R., Gopalaswamy, G., & Balachandar, D. (2016). Development of sequence-characterized amplified region (SCAR) markers as a quality standard of inoculants based on Azospirillum. Archives of Microbiology. https://doi.org/10.1007/s00203-016-1187-7.

    Article  CAS  Google Scholar 

  • Rodriguez-Navarro, D. N., Buendia, A. M., Camacho, M., Lucas, M. M., & Santamaria, C. (2000). Characterization of Rhizobium spp. bean isolates from south-West Spain. Soil Biology and Biochemistry, 32, 1601–1613. https://doi.org/10.1016/S0038-0717(00)00074-2.

    Article  CAS  Google Scholar 

  • Rozier, C., Hamzaoui, J., Lemoine, D., Czarnes, S., & Legendre, L. (2017). Field-based assessment of the mechanism of maize yield enhancement by Azospirillum lipoferum CRT1. Scientific Reports, 7, 1–12. https://doi.org/10.1038/s41598-017-07929-8.

    Article  CAS  Google Scholar 

  • Sahin, U., Ekinci, M., Kiziloglu, F. M., Yildirim, E., Turan, M., & Kotan, R. (2015). Ameliorative effects of plant growth on water-yield relationships, growth, and nutrient uptake of lettuce plants under different irrigation levels. Hort Science, 50(9), 1379–1386.

    Google Scholar 

  • Saia, S., Rappa, V., Ruisi, P., Abenavoli, M. R., Sunseri, F., Giambalvo, D., Frenda, A. S., & Martinelli, F. (2015a). Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2015.00815.

  • Saia, S., Ruisi, P., Fileccia, V., Di Miceli, G., Amato, G., & Martinelli, F. (2015b). Metabolomics suggests that soil inoculation with arbuscular mycorrhizal fungi decreased free amino acid content in roots of durum wheat grown under N-limited, P-rich field conditions. PLoS One. https://doi.org/10.1371/journal.pone.0129591.

    Article  Google Scholar 

  • Sarathambal, C., Ilamurugu, K., Balachandar, D., Chinnadurai, C., & Gharde, Y. (2015). Characterization and crop production efficiency of diazotrophic isolates from the rhizosphere of semi-arid tropical grasses of India. Applied Soil Ecology, 87, 1–10. https://doi.org/10.1016/j.apsoil.2014.11.004.

    Article  Google Scholar 

  • Sarwar, M. A., Tahir, M., Tanveer, A., & Yaseen, M. (2016). Evaluating role of plant growth promoting rhizobacteria for improving phosphorus use efficiency and productivity in sunflower (Helianthus annuus). International Journal of Agriculture and Biology, 18, 881–888. https://doi.org/10.17957/IJAB/15.0110.

    Article  CAS  Google Scholar 

  • Shanta, N., Schwinghamer, T., Backer, R., Allaire, S. E., Teshler, I., Vanasse, A., Whalen, J., Baril, B., Lange, S., MacKay, J., Zhou, X., & Smith, D. L. (2016). Biochar and plant growth promoting rhizobacteria effects on switchgrass (Panicum virgatum cv. Cave-in-rock) for biomass production in southern Québec depend on soil type and location. Biomass and Bioenergy, 95, 167–173. https://doi.org/10.1016/j.biombioe.2016.10.005.

    Article  CAS  Google Scholar 

  • Song, X., Liu, M., Wu, D., Griffiths, B. S., Jiao, J., Li, H., & Hu, F. (2015). Interaction matters: Synergy between vermicompost and PGPR agents improves soil quality, crop quality and crop yield in the field. Applied Soil Ecology, 89, 25–34. https://doi.org/10.1016/j.apsoil.2015.01.005.

    Article  Google Scholar 

  • Spain. (2017). Royal Decree 999/2017, of November 24th, modifying the Royal Decree 506/2013, of June 28th, about fertilizer products. Official State Gazette (BOE), 296, 119396–119450.

    Google Scholar 

  • Stamenković, S., Beškoski, V., Karabegović, I., Lazić, M., & Nikolić, N. (2018). Microbial fertilizers: A comprehensive review of current findings and future perspectives. Spanish Journal of Agricultural Research, 16. https://doi.org/10.5424/sjar/2018161-12117.

    Article  Google Scholar 

  • Timmusk, S., Behers, L., Muthoni, J., Muraya, A., & Aronsson, A.-C. (2017). Perspectives and challenges of microbial application for crop improvement. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00049.

  • Tiwari, S., Prasad, V., Chauhan, P. S., & Lata, C. (2017). Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Frontiers in Plant Science, 8, 1510. https://doi.org/10.3389/fpls.2017.01510.

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyay, S. K., & Singh, D. P. (2015). Effect of salt-tolerant plant growth-promoting rhizobacteria on wheat plants and soil health in a saline environment. Plant Biology. https://doi.org/10.1111/plb.12173.

    Article  Google Scholar 

  • Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., Nasrulhaq Boyce, A., Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., & Nasrulhaq Boyce, A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules, 21. https://doi.org/10.3390/molecules21050573.

    Article  Google Scholar 

  • Wang, B., Shen, Z., Zhang, F., Raza, W., Yuan, J., Huang, R., Ruan, Y., Li, R., & Shen, Q. (2016). Bacillus amyloliquefaciens strain W19 can promote growth and yield and suppress Fusarium wilt in banana under greenhouse and field conditions. Pedosphere, 26, 733–744. https://doi.org/10.1016/S1002-0160(15)60083-2.

    Article  Google Scholar 

Download references

Acknowledgements

The research line “Biofertilisers for Sustainable Agriculture” belonging to the research group IQUIMAB (University of León), has been financially supported since 2014 to date by the Spanish Ministry of Science, Innovation and Universities (project RTC2014-1793-2), by the Spanish Ministry of Foreign Affairs and Cooperation (project 2015/ACDE/1339), and by the European Comission call H2020 (project NEWFERT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando González-Andrés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barquero, M., Pastor-Buies, R., Urbano, B., González-Andrés, F. (2019). Challenges, Regulations and Future Actions in Biofertilizers in the European Agriculture: From the Lab to the Field. In: Zúñiga-Dávila, D., González-Andrés, F., Ormeño-Orrillo, E. (eds) Microbial Probiotics for Agricultural Systems. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-17597-9_6

Download citation

Publish with us

Policies and ethics