Skip to main content

Combined Application of Microbial and Non-Microbial Biostimulants to Improve Growth of Peanut Plants Exposed to Abiotic Stresses

  • Chapter
  • First Online:
Book cover Microbial Probiotics for Agricultural Systems

Abstract

Peanut is a widespread legume, with an important agricultural and economic significance. It symbiotically interacts with rhizobia, increasing atmospheric nitrogen assimilation by the biological nitrogen fixation process, therefore improving yield. The presence of the environmental pollutant arsenic and the occurrence of water deficit episodes constitute severe abiotic stresses affecting this symbiosis, being biostimulants a sustainable alternative to increase crop yields. Thus, the objective of this work was to determine the effects of the joint application of a commercial seed non-microbial plant biostimulant (Nutrifer® 202) and a microbial plant biostimulant on growth, nodulation and oxidative stress indicator-levels, on peanut plants exposed to arsenic or drought. Biostimulant addition reduced As translocation to leaves and improved plant growth and nodulation in the drought stress condition, in association with proline accumulation, with a protective function on the cellular redox balance. Therefore the application of the biostimulant combination Nutrifer® 202 and Bradyrhizobium sp. C-145 is promising for peanut crops growing in regions susceptible to water deficit or arsenic exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerblom, S., Baath, E., Bringmark, L., & Bringmark, E. (2007). Experimentally induced effects of heavy metal on microbial activity and community structure of forest more layers. Biology and Fertility of Soils, 44, 79–91.

    Article  Google Scholar 

  • Alexieva, V., Sergiev, I., Mapelli, S., & Karanov, E. (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment, 24, 1337–1344.

    Article  CAS  Google Scholar 

  • Amaliotis, D., Therios, I., & Karatissiou, M. (2004). Effect of nitrogen fertilization on growth, leaf nutrient concentration and photosynthesis in three peach cultivars. ISHS, Acta Horticulture, 449, 36–42.

    Google Scholar 

  • Arnon, D. (1949). Copper enzymes in chloroplasts polyphenoloxydases in Beta vulgaris. Journal of Plant Physiology, 24, 1–15.

    Article  CAS  Google Scholar 

  • Baliña, R. M., Díaz-Zorita, M., & Kearney, M. I. T. et al. (2013). Combinación de microorganismos y rendimiento de maní. XXVIII Jornada Nacional del Maní. INTA – CIA Cabrera. General Cabrera, Córdoba, Argentina.

    Google Scholar 

  • Barr, H., & Weatherley, P. (1962). A re-examination of the relative turgidity technique for estimating water deficit in leaves. Australian Journal of Biological Sciences, 15, 413–428.

    Article  Google Scholar 

  • Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water stress study. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  • Bianucci, E., Furlan, A., Tordable, M. D. C., et al. (2017). Antioxidant responses of peanut roots exposed to realistic groundwater doses of arsenate: Identification of glutathione S-transferase as a suitable biomarker for metalloid toxicity. Chemosphere, 181, 551–561.

    Article  CAS  Google Scholar 

  • Bianucci, E., Godoy, A., Furlan, A., Peralta, J. M., Hernández, L. E., Carpena-Ruiz, R. O., & Castro, S. (2018). Arsenic toxicity in soybean alleviated by a symbiotic species of Bradyrhizobium. Symbiosis, 74(3), 167–176.

    Google Scholar 

  • Boote, K. (1992). Growth stages of peanut (Arachis hypogaea L.). Peanut Science, 9, 35–40.

    Google Scholar 

  • Burk, R. (1996). Soil survey laboratory methods manual. Soil Survey Investigations Report 42, Ver. 3.0. (National Soil Survey Center: Lincoln, NE).

    Google Scholar 

  • Bustingorri, C., & Lavado, R. S. (2014). Soybean as affected by high concentrations of arsenic and fluoride in irrigation water in controlled conditions. Agricultural Water Management, 144, 134–139.

    Article  Google Scholar 

  • Cabrera, A., Blarasin, M., Matteoda, E., Villalba, G., Gomez, M. L. (2005). Composición química del agua subterránea en el sur de córdoba: línea de base hidroquímica o fondo natural en referencia a arsénico y flúor. http://www.produccion-animal.com.ar. Accessed 1 March 2018.

  • Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant NMPBs. Plant and Soil, 383, 3–41.

    Article  CAS  Google Scholar 

  • Cerioni, G. A., Morla, F. D., Kearney, M. I. T., Mattana, F., Bassino, S., Pironello, A., Giayetto, O., Fernandez, E. M., Righi, D., & Stefani, R. (2014). Efecto de bioestimulantes e inoculante sobre el crecimiento y rendimiento en el cultivo de maní. XXIX Jornada Nacional de Maní. INTA - CIA Cabrera. General Cabrera, Córdoba, Argentina.

    Google Scholar 

  • Clavel, D., Diouf, O., Khalfaoui, J. L., et al. (2006). Genotypes variations in fluorescent parameters along closely related groundnut (Arachis hypogaea L.) lines and their potential for drought screening programs. Field Crops Research, 96, 296–306.

    Article  Google Scholar 

  • Demmig-Adams, B., & Adams, W. W. (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Physiology and Plant Molecular Biology, 43, 599–626.

    Article  CAS  Google Scholar 

  • Doke, N. (1983). Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophora infestans and to the hyphall walls components. Physiological Plant Pathology, 23, 345–357.

    Article  CAS  Google Scholar 

  • Esterbauer, H., & Cheeseman, K. H. (1990). Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods in Enzymology, 186, 407–421.

    Article  CAS  Google Scholar 

  • Fernandez, E. M., & Giayetto, O. (Eds). (2017). El cultivo del maní en Córdoba. Uni Rio. 144 pp.

    Google Scholar 

  • Frahry, G., & Schopfer, P. (2001). NADH-stimulated, cyanide-resistant superoxide production in maize coleoptiles analyzed with a tetrazolium-based assay. Planta, 212(2), 175–183.

    Article  CAS  Google Scholar 

  • Francisca, F. M., Celollada-Verdaguer, M. P., & Carro-Pérez, M. E. (2006) Presented in part at Conference VIII Congreso Latinoamericano de hidrología subterránea. Distribución espacial del arsénico en las aguas subterráneas de la provincia de Córdoba, Argentina. Asunción.

    Google Scholar 

  • Furlan, A., Llanes, A., Luna, V., et al. (2013). Abscisic acid mediates hydrogen peroxide production in peanut induced by water stress. Biologia Plantarum, 57(3), 555–558.

    Article  CAS  Google Scholar 

  • Furlan, A. L., Bianucci, E., Tordable, M., et al. (2014). Antioxidant enzyme activities and gene expression patterns in peanut nodules during a drought and rehydration cycle. Functional Plant Biology, 2014(41), 704–713.

    Article  Google Scholar 

  • Furlan, A., Bianucci, E., Tordable, M., et al. (2016). Dynamic responses of photosynthesis and antioxidant system during a drought and rehydration cycle in peanut plants. Functional Plant Biology, 43(4), 337–345.

    Article  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 25, 189–198.

    Article  Google Scholar 

  • Hoagland, D., & Arnon, D. (1950). The water culture method for growing plants without soil. California Agriculture (Berkeley), 347, 1–39.

    Google Scholar 

  • Jongrungklang, N., Toomsan, B., Vorasoot, N., et al. (2011). Rooting traits of peanut genotypes with different yield responses to pre-flowering drought stress. Field Crops Research, 120, 262–270.

    Article  Google Scholar 

  • Kearney, M. I. T., Cerioni, G. A., Stefani, R. (2011). Bioestimulante aplicado a la semilla de maní sobre la emergencia, el rendimiento y la calidad. Paper presented at the 26° Jornada Nacional de Maní. 15 de septiembre de 2011. General Cabrera, Córdoba (AR): INTA – CIA. pp. 90–92.

    Google Scholar 

  • Lafuente, A., Pajuelo, E., Caviedes, M. A., & Rodríguez-Llorente, I. D. (2010). Reduced nodulation in alfalfa induced by arsenic correlates with altered expression of early nodulins. Journal of Plant Physiology, 167(4), 286–291.

    Article  CAS  Google Scholar 

  • Lafuente, A., Pérez-Palacios, P., Doukkali, B., Molina-Sánchez, M. D., Jiménez-Zurdo, J. I., Caviedes, M. A., Rodríguez-Llorente, I. D., & Pajuelo, E. (2015). Unraveling the effect of arsenic on the model Medicago-Ensifer interaction: A transcriptomic meta-analysis. The New Phytologist, 205, 255–272. https://doi.org/10.1111/nph.13009.

    Article  Google Scholar 

  • Liu, H., Sultan, M. A. R. F., & Zhao, H. X. (2013). The screening of water stress tolerant wheat cultivars with physiological indices. GJESM, 3, 211–218.

    CAS  Google Scholar 

  • Mandal, S. M., Pati, B., Das, R., Amit, K., & Ghosh, K. A. (2008). Characterization of a symbiotically effective Rhizobium resistant to arsenic: Isolated from root nodules of Vigna mungo (L.) Hepper grown in arsenic contaminated field. The Journal of General and Applied Microbiology, 54, 93–99.

    Google Scholar 

  • Mhadhbi, H., Mylona, P. V., & Polidoros, A. N. (2015). Legume-rhizobia symbiotic performance under abiotic stresses.In M. M. Azooz & P. Ahmad (Eds.), Legumes under Environmental Stress. https://doi.org/10.1002/9781118917091.ch8.

    Chapter  Google Scholar 

  • Morla, F. D., Kearney, M. I. T., & Cerioni, G. A. (2013). Bioestimulantes en cultivos. II maní Paper presented at the XIX Jornadas científicas – SBC – La Falda, Córdoba, Argentina 8–10 agosto 2013.

    Google Scholar 

  • Naser, L., Kourosh, V., & Bahman, K. (2010). Soluble sugars and proline accumulation play a role as effective indices for drought tolerance screening in Persian walnut (Juglans regia L.) during germination. Fruits, 65, 97–112.

    Google Scholar 

  • Nelson, D., & Sommers, L. (1973). Determination of total nitrogen in plant material. Agronomy Journal, 65, 109–112.

    Article  CAS  Google Scholar 

  • Nutrifer S.A. (2017) Propuesta de nutrición en maní. In: http://www.nutrifer.com.ar/productos_cultivo_otros_cultivos_4/

  • Pajuelo, E., Rodríguez-Llorente, I. D., Dary, M., & Palomares, A. J. (2008). Toxic effects of arsenic on Sinorhizobium-Medicago sativa symbiotic interaction. Environmental Pollution, 154, 203–211.

    Google Scholar 

  • Panigrahi, D. P., & Randhawa, G. S. (2010). A novel method to alleviate arsenic toxicity in alfalfa plants using a deletion mutant strain of Sinorhizobium meliloti. Plant and Soil, 336, 459–467.

    Google Scholar 

  • Panigrahi, D. P., Sagar, A., Dalal, S., & Randhawa, G. S. (2013). Arsenic resistence and symbiotic efficiencies of alfalfa and cowpea rhizobial strain isolated from arsenic agricultural fields. The Journal of Experimental Biology, 3, 322–333.

    Google Scholar 

  • Paudyal, S. P., Aryal, R. R., Chauhan, S. V. S., & Maheshwari, D. K. (2007). Effect of heavy metals on growth of Rhizobiumstrains and symbiotic efficiency of two species of tropical legumes. Science World, 5, 27–32.

    Google Scholar 

  • Pedelini, R. (2008). Maní: Guía práctica de su cultivo. General Cabrera, Córdoba: OT General Cabrera- INTA EEA Manfredi. Boletín de divulgación técnica N° 2.

    Google Scholar 

  • Peralta, J. M., Travaglia, C. N., Gil, R. A., Furlan, A., Castro, S., Bianucci, E. C. (2018). An effective rhizoinoculation restraints arsenic translocation in peanut and maize plants exposed to a realistic groundwater metalloid dose. International Congress and Exhibition: Arsenic In The Environment, Beijing, P.R.. Environmental Arsenic in a Changing World As 2018. China 2018.

    Google Scholar 

  • Pimratch, S., Jogloy, S., & Vorasoot, B. (2008). Effect of drought stress on traits related to N2 fixation in eleven peanut (Arachis hypogaea L.) genotypes differing in degrees of resistance to drought. Asian Journal of Plant Sciences, 7, 334–342.

    Google Scholar 

  • Puangbut, D., Jogloy, S., & Vorasoot, N. (2009). Association of root dry weight and transpiration efficiency of peanut genotypes under early season drought. Agricultural Water Management, 96(10), 1460–1466.

    Article  Google Scholar 

  • Reddy, T. Y., Reddy, V. R., & Anbumozhi, V. (2003). Physiological responses of groundnut (Arachis hypogaea L.) to drought stress and its amelioration: A review. Acta Agronomica Hungarica, 51, 205–227.

    Google Scholar 

  • Reichman, S. M. (2007). The potential use of the legume-rhizobium symbiosis for the remediation of arsenic contaminated sites. Soil Biology and Biochemistry, 39, 2587–2593.

    Article  CAS  Google Scholar 

  • Serraj, R. (2003). Effects of drought stress on legume symbiotic nitrogen fixation: Physiological mechanisms. Indian Journal of Experimental Biology, 41(10), 1136–1141.

    CAS  PubMed  Google Scholar 

  • Serraj, R., Sinclair, T. R., & Purcell, L. C. (1999). Symbiotic N2 fixation response to drought. Journal of Experimental Botany, 50, 143–155.

    Google Scholar 

  • Signorelli, S., Coitiño, E., & Borsani, O. (2014). Molecular mechanisms for the reaction between •OH radicals and proline: Insights on the role as reactive oxygen species scavenger in plant stress. The Journal of Physical Chemistry. B, 118, 37–47.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour, and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Sobolev, D., & Begonia, M. (2008). Effects of heavy metal contamination upon soil microbes: Lead induced changes in general and denitrifying microbial communities as evidenced by molecular markers. International Journal of Environmental Research and Public Health, 5, 450–456.

    Article  CAS  Google Scholar 

  • Sobrino-Plata, J., Ortega-Villasante, C., Flores-Cáceres, M. L., et al. (2009). Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa. Chemosphere, 77, 946–954.

    Article  CAS  Google Scholar 

  • Somasegaran, P., & Hoben, H. (1994). Quantifying the growth of rhizobia. In Handbook for rhizobia (pp. 165–169). New York: Springer-Verlag Inc..

    Chapter  Google Scholar 

  • Szabados, L., & Savouré, A. (2009). Proline: A multifunctional amino acid. Trends in Plant Science, 15, 89–97.

    Article  Google Scholar 

  • Valetti, L., Angelini, J., Cerioni, G., et al. (2008). Desarrollo y evaluación a campo de un inoculante para maní elaborado a partir de aislamientos rizobianos nativos de la zona mansera de la provincia de Córdoba. Paper presented at the XXIII Jornada Nacional de Maní. Gral. Cabrera – Córdoba. (pp. 36–38).

    Google Scholar 

  • Vázquez, S., Goldsbrough, P., & Carpena, R. O. (2009). Comparative analysis of the contribution of phytochelatins to cadmium and arsenic tolerance in soybean and white lupin. Plant Physiology and Biochemistry, 47, 63–67.

    Article  Google Scholar 

  • Vincent, J. (1970). A manual for the practical study of root nodule bacteria. En: IBP Handbook N° 15. Oxford: Blackwell Scientific Publication.

    Google Scholar 

  • Wright, G. C., Nageswara Rao, R. C. (1994). Groundnut water relations. In: Smartt, J (Ed). The groundnut crop, a scientific basic for improvement. Chapman & Hall. Londres. Cap. 9. p. 281–335.

    Google Scholar 

  • Yakhin, O. I., Lubyanov, A. A., & Yakhin, I. A. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7, 2049. https://doi.org/10.3389/fpls.2016.02049.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Secretaría de Ciencia y Técnica (Universidad Nacional de Río Cuarto); FONCYT PICT 2015-2104; FONCYT PICT 2014-0956; NUTRIFER S.A. for providing financial assistance for this research. AF and EB are members of the research career from CONICET. JMP has a scholarship from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Furlan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Furlan, A. et al. (2019). Combined Application of Microbial and Non-Microbial Biostimulants to Improve Growth of Peanut Plants Exposed to Abiotic Stresses. In: Zúñiga-Dávila, D., González-Andrés, F., Ormeño-Orrillo, E. (eds) Microbial Probiotics for Agricultural Systems. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-17597-9_17

Download citation

Publish with us

Policies and ethics