Skip to main content

Arbuscular Mycorrhizae and PGPR Applications in Tropical Savannas

  • Chapter
  • First Online:
Microbial Probiotics for Agricultural Systems

Abstract

In Venezuela, most of agricultural soils are acid with low fertility. In these soils available forms of P are scarce and not readily available. Most of P is inorganic associated with iron and aluminum phosphates (45%), and is available by solubilization. To improve production and soil fertility it is recommended to fertilize with rock phosphate, organic amendments as cover crops and use of biofertilizers. Microorganisms related to P nutrition were studied in an acid Ultisol, located in central-northern Venezuela. 25% of native plants were mycorrhized and had phosphate solubilizing bacteria (PSB) in their rhizospheres, highlighting Burkholderia sp. solubilizing iron, aluminum and calcium phosphates and rock phosphate. Native Glomeromycota fungi (NGF) were reproduced in trap pots to obtain a consortia inoculum. Greenhouse tests were carried out with Zea mays L. co-inoculated with NGF in consortium and/or Burkholderia sp. Rock phosphate was added in recommended doses. Cover crops were also applied into the soil as organic matter similar to suggested agroecological management. Inoculation of NGF and PSB improved maize biomass when fertilized with rock phosphate. In all cases of BSP-AM interaction, the percent of active mycorrhizal root colonization with succinate dehydrogenase activity was higher, suggesting cooperation of this bacteria in Glomeromycota colonization and functionality, and a possible role as mycorrhiza-helper bacteria. Fertilization indicated that rock phosphate was adequate. Its use together with beneficial microorganisms appears as an alternative to improve crop production in low fertility soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Artursson, V., Finlay, R. D., & Jansson, J. K. (2006). Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology, 8, 1–10. https://doi.org/10.1111/j.1462-2920.2005.00942.x.

    Article  CAS  PubMed  Google Scholar 

  • Barea, J. M. (2001). Interacciones ecológicas de los microorganismos en el suelo y sus implicaciones en agricultura. In J. L. Moreno & M. A. Altieri (Eds.), Agroecología y Desarrollo (pp. 165–184). Cáceres: Ediciones Mundi-Prensa.

    Google Scholar 

  • Barea, J. M., Toro, M., Orozco, M. O., Campos, E., & Azcón, R. (2002). The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutrient Cycling in Agroecosystems, 63(1), 35–42.

    Article  CAS  Google Scholar 

  • Barea, J. M., Pozo, M. J., Azcón, R., & Azcón-Aguilar, C. (2005). Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56(417), 1761–1778.

    Article  CAS  Google Scholar 

  • Bassegio, D., Ferreira Santos, R., Secco, D., Zanão Junior, L. A., Werncke, I., & Mansano Sarto, M. V. (2015). Short-term effects of crop rotations on soil chemical properties under no-tillage condition. Australian Journal of Crop Science, 9(1), 49–54.

    CAS  Google Scholar 

  • Bremner, J., & Mulvaney, C. (1982). Total nitrogen. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Agronomy monograph number 9. Methods of soil analysis, Part 2: Chemical and biological properties (2nd ed., pp. 595–642). Madison: ASA-SSSA.

    Google Scholar 

  • Cardoso, I., & Kuyper, T. (2006). Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems and Environment, 116, 72–84.

    Article  Google Scholar 

  • Casanova, E., Salas, A. M., & Toro, M. (2002). The use of nuclear and related techniques for evaluating agronomic effectiveness of phosphate fertilizers, in particular rock phosphate, in Venezuela. In F. Sikora (Ed.), Assessment of soil phosphorus status and management of phosphate fertilizers to optimize crop production (pp. 93–100). International Atomic Energy Agency- TECDOC 1272.

    Google Scholar 

  • Compant, S., Nowak, J., Coenye, T., Clément, C., & Barka, E. (2008). Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiology Reviews, 32, 607–626.

    Article  CAS  Google Scholar 

  • Fageria, N. K., Baligar, V. C., & Bailey, B. A. (2005). Role of cover crops in improving soil and row crop productivity. Communications in Soil Science and Plant Analysis, 36, 2733–2757.

    Article  CAS  Google Scholar 

  • Garbaye, J. (1994). Helper bacteria—A new dimension to the mycorrhizal symbiosis. The New Phytologist, 128, 197–210.

    Article  Google Scholar 

  • Giovanetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular-arbuscular infection in roots. New Phytologist, 84, 489–500.

    Article  Google Scholar 

  • Janegitz, M. C., Souza, E. A., & Rosolem, C. A. (2016). Brachiaria as a cover crop to improve phosphorus use efficiency in a no-till oxisol. Revista Brasileira de Ciência do Solo, 40, e0150128.

    Article  Google Scholar 

  • Janegitz, M., Martins, A. R. H., & Rosolem, C. A. (2017). Cover crops and soil phosphorus availability. Communications in Soil Science and Plant Analysis, 48, 1240–1246. https://doi.org/10.1080/00103624.2017.1341918.

    Article  CAS  Google Scholar 

  • Jlabbé, J., Weston, D. J., Dunkirk, N., Pelletier, D. A., & Tuskan, G. A. (2014). Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus. Frontiers in Plant Science, 5, 1–10.

    Google Scholar 

  • Johansson, J. F., Paul, L. R., & Finlay, R. D. (2004). Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology, 48, 1–13.

    Article  CAS  Google Scholar 

  • Kurth, F., Zeitler, K., Feldhahn, L., Neu, T., Weber, T., Krištůfek, V., Wubet, T., Herrmann, S., Buscot, F., & Tarkka, M. (2013). Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiology, 13, 205–215.

    Article  Google Scholar 

  • Lies, A., Delteil, A., Prin, Y., & Duponnois, R. (2018). Using mycorrhiza helper microorganisms (MHM) to improve the mycorrhizal efficiency on plant growth. In V. S. Meena (Ed.), Role of rhizospheric microbes in soil volume 1: Stress management and agricultural sustainability (pp. 277–298). Singapore: Springer.

    Chapter  Google Scholar 

  • Lovera, M., & Cuenca, G. (2007). Diversity of arbuscular mycorrhizal fungi (AMF) and mycorrhizal potential of the soil from a natural and a disturbed savannah from La Gran Sabana. Venezuela Interciencia, 32, 108–114.

    Google Scholar 

  • Lozano, Z. P., Mogollón, A., Hernández, R., Bravo, C., Ojeda, A., Torres, A., Rivero, C., & Toro, M. (2010). Cambios en las propiedades químicas de un suelo de sabana luego de la introducción de pasturas mejoradas. Bioagro, 22(2), 135–144.

    Google Scholar 

  • Lozano, Z., Hernández-Hernández, R. M., Bravo, C., Rivero, C., Toro, M., & Delgado, M. (2012). Availability of phosphorus in Venezuelan savannas with well drained soil, under different cover crops and of fertilization. Interciencia, 37(11), 820–827.

    Google Scholar 

  • Mora, E., Toro, M., & López-Hernández, D. (2013). Exploring arbuscular mycorrhizae, rhizobium and phosphate solubilizing bacteria in low fertility savanna soils in central Venezuela: Characterization and isolation of potential biofertilizers. In M. Miransari (Ed.), Soil microbiology and biotechnology (pp. 97–114). Studium Press LLC.

    Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.

    Google Scholar 

  • Nath, D., & Meena, V. S. (2018). Mycorrhizae: A potential microorganism and its implication in agriculture. In V. S. Meena (Ed.), Role of rhizospheric microbes in soil volume 1: Stress management and agricultural sustainability (pp. 251–276). Singapore: Springer.

    Chapter  Google Scholar 

  • Novais, R. F., Smyth, T. J, & Nunes, F. N. (2007). Fosforo. In R. F. Novais, V. H. Alvarez, N. F. Barros, R. L. F. Fontes, R. B. Cantarutti, & J. C. L. Neves (Eds.), Fertilidade so solo. Chapter 8. Sociedade brasilera do ciencias do solo (pp. 472–550). Vicosa MG.

    Google Scholar 

  • Pivato, B., Offre, P., Marchelli, S., Barbonaglia, B., Mougel, C., Lemanceau, P., et al. (2009). Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi,and host plant. Mycorrhiza, 19, 81–90. https://doi.org/10.1007/s00572-008-0205-2.

    Article  PubMed  Google Scholar 

  • Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C., Sanchez, P. A., & Cassman, K. G. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4, 678–683.

    Article  Google Scholar 

  • Rodríguez, T., Sanabria, D., & Navarro, L. (2003). Nuevos enfoques en el Manejo de Sabanas en los llanos Orientales Venezolanos. http://www.ceniap.gov.ve/bdigital/fdivul/fd52/sabanas.htm

  • Sarmiento, G., da Silva, M., Naranjo, M. E., & Pinillos, M. (2006). Nitrogen and phosphorus as limiting factors for growth and primary production in a flooded savanna in the Venezuelan Llanos. Journal of Tropical Ecology, 22, 203–212.

    Article  Google Scholar 

  • Schaffer, G. F., & Peterson, R. L. (1993). Modifications to clearing methods used in combination with vital staining of roots colonized with vesicular-arbuscular mycorrhizal fungi. Mycorrhiza, 4, 29–35.

    Article  Google Scholar 

  • Simoneti Foloni, J. S., Calonego, J. C., Barbosa, A., Catuchi, T. A., & Tiritan, C. S. (2016). Availability of phosphorus in soil and straw in successive tropical grasses crop fertilized with different phosphates. Journal of Agronomy, 15(3), 104–113.

    Article  Google Scholar 

  • Smith, S. E., & Gianinazzi-Pearson, V. (1990). Phosphate uptake and vesicular-arbuscular activity in mycorrhiza Allium cepa L.: Effect of photon irradiance and phosphate nutrition. Australian Journal of Plant Physiology, 17, 177–188.

    CAS  Google Scholar 

  • Tchabi, A., Coyne, D., Hountondji, F., Lawouin, L., Wiemken, A., & Oehl, F. (2008). Arbuscular mycorrhizal fungal communities in sub-Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza, 18, 181–195.

    Article  Google Scholar 

  • Toljander, J. F., Lindahl, B., Paul, L., Elfstrand, M., & Finlay, R. (2007). Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiology Ecology, 61, 295–304.

    Article  CAS  Google Scholar 

  • Toro, M., Azcón, R., & Barea, J. M. (1997). Improvement of arbusular mycorrhizal development by inoculation with phosphate solubilizing rhizobacteria to benefit rock phosphate bioavailability (32P) and nutrient cycling. Applied and Environmental Microbiology, 63(11), 4408–4412.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weil, R. R., & Brady, N. C. (2016). The nature and properties of soils (15th ed.). New York: Pearson.

    Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to Mrs. Maria Auxi Toro Garcia for editing and manuscript corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Toro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mora, E., Lopez-Hernández, D., Toro, M. (2019). Arbuscular Mycorrhizae and PGPR Applications in Tropical Savannas. In: Zúñiga-Dávila, D., González-Andrés, F., Ormeño-Orrillo, E. (eds) Microbial Probiotics for Agricultural Systems. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-030-17597-9_11

Download citation

Publish with us

Policies and ethics