Skip to main content

Statistical Features of Collective Cell Migration

  • Chapter
  • First Online:
Cell Migrations: Causes and Functions

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1146))

Abstract

We discuss recent advances in interpreting the collective dynamics of cellular assemblies using ideas and tools coming from the statistical physics of materials. Experimental observations suggest analogies between the collective motion of cell monolayers and the jamming of soft materials. Granular media, emulsions and other soft materials display transitions between fluid-like and solid-like behavior as control parameters, such as temperature, density and stress, are changed. A similar jamming transition has been observed in the relaxation of epithelial cell monolayers. In this case, the associated unjamming transition, in which cells migrate collectively, is linked to a variety of biochemical and biophysical factors. In this framework, recent works show that wound healing induce monolayer fluidization with collective migration fronts moving in an avalanche-like behavior reminiscent of intermittent front propagation in materials such as domain walls in magnets, cracks in disordered media or flux lines in superconductors. Finally, we review the ability of discrete models of cell migration, from interacting active particles to vertex and Voronoi models, to simulate the statistical properties observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelini TE, Hannezo E, Trepat X, Fredberg JJ, Weitz DA (2010) Cell migration driven by cooperative substrate deformation patterns. Phys Rev Lett 104(16):168104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Angelini TE, Hannezo E, Trepat X, Marquez M, Fredberg JJ, Weitz DA (2011) Glass-like dynamics of collective cell migration. Proc Natl Acad Sci U S A 108(12):4714–4719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Utuje KJC, Marchetti MC (2015) Propagating stress waves during epithelial expansion. Phys Rev Lett 114(22):228101

    Article  PubMed  CAS  Google Scholar 

  • Barton DL, Henkes S, Weijer CJ, Sknepnek R (2017) Active vertex model for cell-resolution description of epithelial tissue mechanics. PLoS Comput Biol 13(6):e1005569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bazellières E, Conte V, Elosegui-Artola A, Serra-Picamal X, Bintanel-Morcillo M, Roca-Cusachs P, Muñoz JJ, Sales-Pardo M, Guimerà R, Trepat X (2015) Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol 17(4):409–420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berthier L (2014) Nonequilibrium glassy dynamics of self-propelled hard disks. Phys Rev Lett 112:220602

    Article  PubMed  CAS  Google Scholar 

  • Dapeng Bi, Lopez JH, Schwarz JM, Lisa Manning M (2015) A density-independent rigidity transition in biological tissues. Nat Phys 11(12):1074–+

    Google Scholar 

  • Bi D, Yang X, Marchetti MC, Manning ML (2016) Motility-driven glass and jamming transitions in biological tissues. Phys Rev X 6:021011

    PubMed  PubMed Central  Google Scholar 

  • Bonn D, Tanase S, Abou B, Tanaka H, Meunier J (2002) Laponite: aging and shear rejuvenation of a colloidal glass. Phys Rev Lett 89(1):015701

    Article  PubMed  CAS  Google Scholar 

  • Brugues A, Anon E, Conte V, Veldhuis JH, Gupta M, Colombelli J, Munoz JJ, Brodland GW, Ladoux B, Trepat X (2014) Forces driving epithelial wound healing. Nat Phys 10(9):683–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauve P, Le Doussal P, Wiese KJ (2001) Renormalization of pinned elastic systems: how does it work beyond one loop. Phys Rev Lett 86:1785–1788

    Article  CAS  PubMed  Google Scholar 

  • Chepizhko O, Giampietro C, Mastrapasqua E, Nourazar M, Ascagni M, Sugni M, Fascio U, Leggio L, Malinverno C, Scita G, Santucci S, Alava MJ, Zapperi S, La Porta CAM (2016) Bursts of activity in collective cell migration. Proc Natl Acad Sci U S A 113(41):11408–11413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chepizhko O, Lionetti MC, Malinverno C, Giampietro C, Scita G, Zapperi S, La Porta CAM (2018) From jamming to collective cell migration through a boundary induced transition. Soft Matter 14(19):3774–3782

    Article  CAS  PubMed  Google Scholar 

  • Cloitre M, Borrega R, Monti F, Leibler L (2003) Glassy dynamics and flow properties of soft colloidal pastes. Phys Rev Lett 90(6):068303

    Article  PubMed  CAS  Google Scholar 

  • Clotet X, Ortín J, Santucci S (2014) Disorder-induced capillary bursts control intermittency in slow imbibition. Phys Rev Lett 113(7):074501

    Article  PubMed  CAS  Google Scholar 

  • Codling EA, Plank MJ, Benhamou S (2008) Random walk models in biology. J R Soc Interface 5(25):813–834

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieterich P, Klages R, Preuss R, Schwab A (2008) Anomalous dynamics of cell migration. Proc Natl Acad Sci U S A 105(2):459–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doxzen K, Vedula SRK, Leong MC, Hirata H, Gov NS, Kabla AJ, Ladoux B, Lim CT (2013) Guidance of collective cell migration by substrate geometry. Integr Biol (Camb) 5(8):1026–1035

    Article  CAS  Google Scholar 

  • Durian DJ, Weitz DA, Pine DJ (1991) Multiple light-scattering probes of foam structure and dynamics. Science 252(5006):686–688

    Article  CAS  PubMed  Google Scholar 

  • Durin G, Zapperi S (2000) Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets. Phys Rev Lett 84:4075–4078

    Article  Google Scholar 

  • Fily Y, Henkes S, Marchetti MC (2014) Freezing and phase separation of self-propelled disks. Soft Matter 10:2132–2140

    Article  CAS  PubMed  Google Scholar 

  • Flenner E, Szamel G, Berthier L (2016) The nonequilibrium glassy dynamics of self-propelled particles. Soft Matter 12:7136–7149

    Article  CAS  PubMed  Google Scholar 

  • Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457

    Article  CAS  PubMed  Google Scholar 

  • Garcia S, Hannezo E, Elgeti J, Joanny J-F, Silberzan P, Gov NS (2015) Physics of active jamming during collective cellular motion in a monolayer. Proc Natl Acad Sci U S A 112(50):15314–15319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gov NS (2014) Cell and matrix mechanics. CRC Press, Boca Raton, pp 219–238

    Book  Google Scholar 

  • Haeger A, Krause M, Wolf K, Friedl P (2014) Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim Biophys Acta 1840(8):2386–2395

    Article  CAS  PubMed  Google Scholar 

  • Haga H, Irahara C, Kobayashi R, Nakagaki T, Kawabata K (2005) Collective movement of epithelial cells on a collagen gel substrate. Biophys J 88(3):2250–2256

    Article  CAS  PubMed  Google Scholar 

  • Henkes S, Fily Y, Marchetti MC (2011) Active jamming: self-propelled soft particles at high density. Phys Rev E 84:040301

    Article  CAS  Google Scholar 

  • Ilina O, Friedl P (2009) Mechanisms of collective cell migration at a glance. J Cell Sci 122(Pt 18):3203– 3208

    Article  CAS  PubMed  Google Scholar 

  • Khalil AA, Friedl P (2010) Determinants of leader cells in collective cell migration. Integr Biol (Camb) 2(11–12):568–574

    Article  Google Scholar 

  • Koch TM, Münster S, Bonakdar N, Butler JP, Fabry B (2012) 3D traction forces in cancer cell invasion. PLoS One 7(3):e33476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • La Porta CAM, Zapperi S (2017) The physics of cancer. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lange JR, Fabry B (2013) Cell and tissue mechanics in cell migration. Exp Cell Res 319(16):2418–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Doussal P, Wiese KJ (2009) Size distributions of shocks and static avalanches from the functional renormalization group. Phys Rev E 79:051106

    Article  CAS  Google Scholar 

  • Leschhorn H, Nattermann T, Stepanow S, Tang LH (1997) Driven interface depinning in a disordered medium. Ann Physik 6:1–34

    Article  Google Scholar 

  • Li B, Sun SX (2014) Coherent motions in confluent cell monolayer sheets. Biophys J 107(7):1532–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Nørrelykke SF, Cox EC (2008) Persistent cell motion in the absence of external signals: a search strategy for eukaryotic cells. PLoS One 3(5):e2093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao Q, Xu N (2018) Criticality of the zero-temperature jamming transition probed by self-propelled particles. Soft Matter 14:853–860

    Article  CAS  PubMed  Google Scholar 

  • Liu AJ, Nagel SR, Langer JS (2010) The jamming transition and the marginally jammed solid. Annu Rev Condens Matter Phys 1:347–369

    Article  Google Scholar 

  • Malinverno C, Corallino S, Giavazzi F, Bergert M, Li Q, Leoni M, Disanza A, Frittoli E, Oldani A, Martini E, Lendenmann T, Deflorian G, Beznoussenko GV, Poulikakos D, Haur OK, Uroz M, Trepat X, Parazzoli D, Maiuri P, Yu W, Ferrari A, Cerbino R, Scita G (2017) Endocytic reawakening of motility in jammed epithelia. Nat Mater 16(5):587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maloy KJ, Santucci S, Schmittbuhl J, Toussaint R (2006) Local waiting time fluctuations along a randomly pinned crack front. Phys Rev Lett 96:045501

    Article  PubMed  CAS  Google Scholar 

  • Mandal R, Bhuyan PJ, Rao M, Dasgupta C (2016) Active fluidization in dense glassy systems. Soft Matter 12:6268–6276

    Article  CAS  PubMed  Google Scholar 

  • Marchetti MC, Banerjee S (2019) Continuum models of collective cell migration. In: La Porta CAM, Zapperi S (eds) Cell migrations: causes and functions. Springer, Cham

    Google Scholar 

  • Mason TG, Bibette J, Weitz DA (1996) Yielding and flow of monodisperse emulsions. J Colloid Interface Sci 179(2):439–448

    Article  CAS  Google Scholar 

  • Metzner C, Mark C, Steinwachs J, Lautscham L, Stadler F, Fabry B (2015) Superstatistical analysis and modelling of heterogeneous random walks. Nat Commun 6:7516

    Article  CAS  PubMed  Google Scholar 

  • Narayan O, Fisher DS (1992) Critical behavior of sliding charge-density waves in 4- epsilon dimensions. Phys Rev B 46:11520

    Article  CAS  Google Scholar 

  • Ng MR, Besser A, Danuser G, Brugge JS (2012) Substrate stiffness regulates cadherin-dependent collective migration through myosin-ii contractility. J Cell Biol 199(3):545–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okuzono T, Kawasaki K (1995) Intermittent flow behavior of random foams: a computer experiment on foam rheology. Phys Rev E 51:1246–1253

    Article  CAS  Google Scholar 

  • Park J-A, Kim JH, Bi D, Mitchel JA, Qazvini NT, Tantisira K, Park CY, McGill M, Kim S-H, Gweon B, Notbohm J, Steward R Jr, Burger S, Randell SH, Kho AT, Tambe DT, Hardin C, Shore SA, Israel E, Weitz DA, Tschumperlin DJ, Henske EP, Weiss ST, Manning ML, Butler JP, Drazen JM, Fredberg JJ (2015) Unjamming and cell shape in the asthmatic airway epithelium. Nat Mater 14:1040–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potdar AA, Jeon J, Weaver AM, Quaranta V, Cummings PT (2010) Human mammary epithelial cells exhibit a bimodal correlated random walk pattern. PLoS One 5(3):e9636

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A, Silberzan P (2007) Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci U S A 104(41):15988–15993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy S (2010) The mechanics and statistics of active matter. Annu Rev Condens Matter Phys 1(1): 323–345

    Article  Google Scholar 

  • Rørth P (2009) Collective cell migration. Annu Rev Cell Dev Biol 25:407–429

    Article  PubMed  CAS  Google Scholar 

  • Rosso A, Le Doussal P, Jörg Wiese K (2009) Avalanche-size distribution at the depinning transition: a numerical test of the theory. Phys Rev B 80:144204

    Article  CAS  Google Scholar 

  • Röttgermann PJF, Alberola AP, Rädler JO (2014) Cellular self-organization on micro-structured surfaces. Soft Matter 10(14):2397–2404

    Article  PubMed  CAS  Google Scholar 

  • Sacks MS, Sun W (2003) Multiaxial mechanical behavior of biological materials. Annu Rev Biomed Eng 5:251–284

    Article  CAS  PubMed  Google Scholar 

  • Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B (2007) Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci U S A 104(20):8281–8286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segrè PN, Prasad V, Schofield AB, Weitz DA (2001) Glasslike kinetic arrest at the colloidal-gelation transition. Phys Rev Lett 86(26 Pt 1):6042–6045

    Article  PubMed  CAS  Google Scholar 

  • Sepúlveda N, Petitjean L, Cochet O, Grasland-Mongrain E, Silberzan P, Hakim V (2013) Collective cell motion in an epithelial sheet can be quantitatively described by a stochastic interacting particle model. PLoS Comput Biol 9(3):e1002944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Serra-Picamal X, Conte V, Vincent R, Anon E, Tambe DT, Bazellieres E, Butler JP, Fredberg JJ, Trepat X (2012) Mechanical waves during tissue expansion. Nat Phys 8(8):628–634

    Article  CAS  Google Scholar 

  • Stokes CL, Lauffenburger DA, Williams SK (1991) Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J Cell Sci 99(Pt 2):419–430

    PubMed  Google Scholar 

  • Szabó B, Szöllösi GJ, Gönci B, Jurányi ZS, Selmeczi D, Vicsek T (2006) Phase transition in the collective migration of tissue cells: experiment and model. Phys Rev E 74:061908

    Article  CAS  Google Scholar 

  • Szamel G (2016) Theory for the dynamics of dense systems of athermal self-propelled particles. Phys Rev E 93:012603

    Article  PubMed  CAS  Google Scholar 

  • Tallakstad KT, Toussaint R, Santucci S, Schmittbuhl J, Maloy KJ (2011) Local dynamics of a randomly pinned crack front during creep and forced propagation: an experimental study. Phys Rev E Stat Nonlin Soft Matter Phys 83(4 Pt 2):046108

    Article  PubMed  CAS  Google Scholar 

  • Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X, Zhou EH, Zaman MH, Butler JP, Weitz DA, Fredberg JJ, Trepat X (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10(6):469–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vedula SRK, Ravasio A, Lim CT, Ladoux B (2013) Collective cell migration: a mechanistic perspective. Physiology (Bethesda) 28(6):370–379

    CAS  Google Scholar 

  • Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75:1226–1229

    Article  CAS  PubMed  Google Scholar 

  • Weaire D, Kermode JP (1984) Computer simulation of a two-dimensional soap froth ii. analysis of results. Philos Mag B 50(3):379–395

    Article  Google Scholar 

  • Wu P-H, Giri A, Sun SX, Wirtz D (2014) Three-dimensional cell migration does not follow a random walk. Proc Natl Acad Sci U S A 111(11):3949–3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank our collaborators on the topic of collective cell migration. In particular, we would like to mention O. Chepizhko, M. C. Lionetti, C. Giampietro and G. Scita.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caterina A. M. La Porta or Stefano Zapperi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Porta, C.A.M.L., Zapperi, S. (2019). Statistical Features of Collective Cell Migration. In: La Porta, C., Zapperi, S. (eds) Cell Migrations: Causes and Functions. Advances in Experimental Medicine and Biology, vol 1146. Springer, Cham. https://doi.org/10.1007/978-3-030-17593-1_5

Download citation

Publish with us

Policies and ethics