Skip to main content

Continuum Models of Collective Cell Migration

  • Chapter
  • First Online:
Book cover Cell Migrations: Causes and Functions

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1146))

Abstract

Collective cell migration plays a central role in tissue development, morphogenesis, wound repair and cancer progression. With the growing realization that physical forces mediate cell motility in development and physiology, a key biological question is how cells integrate molecular activities for force generation on multicellular scales. In this review we discuss recent advances in modeling collective cell migration using quantitative tools and approaches rooted in soft matter physics. We focus on theoretical models of cell aggregates as continuous active media, where the feedback between mechanical forces and regulatory biochemistry gives rise to rich collective dynamical behavior. This class of models provides a powerful predictive framework for the physiological dynamics that underlies many developmental processes, where cells need to collectively migrate like a viscous fluid to reach a target region, and then stiffen to support mechanical stresses and maintain tissue cohesion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi A, Marchetti MC, Liverpool TB (2006) Hydrodynamics of isotropic and liquid crystalline active polymer solutions. Phys Rev E 74(6):061913

    Article  CAS  Google Scholar 

  • Ajeti V, Tabatabai AP, Fleszar AJ, Staddon MF, Seara DS, Suarez C, Yousafzai MS, Bi D, Kovar DR, Banerjee S, Murrell MP (2019) Wound healing coordinates actin architectures to regulate mechanical work. Nat Phys 5:696

    Article  CAS  Google Scholar 

  • Albert PJ, Schwarz US (2016) Dynamics of cell ensembles on adhesive micropatterns: bridging the gap between single cell spreading and collective cell migration. PLoS Comput Biol 12(4):e1004863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Angelini TE, Hannezo E, Trepat X, Fredberg JJ, Weitz DA (2010) Cell migration driven by cooperative substrate deformation patterns. Phys Rev Lett 104(16):168104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Angelini TE, Hannezo E, Trepat X, Marquez M, Fredberg JJ, Weitz DA (2011) Glass-like dynamics of collective cell migration. Proc Nat Acad Sci 108(12):4714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anon E, Serra-Picamal X, Hersen P, Gauthier NC, Sheetz MP, Trepat X, Ladoux B (2012) Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc Nat Acad Sci 109(27):10891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arciero J, Mi Q, Branca MF, Hackam DJ, Swigon D (2011) Continuum model of collective cell migration in wound healing and colony expansion. Biophys J 100:535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Marchetti MC (2011a) Substrate rigidity deforms and polarizes active gels. Europhys Lett 96(2):28003

    Article  CAS  Google Scholar 

  • Banerjee S, Marchetti MC (2011b) Instabilities and oscillations in isotropic active gels. Soft Matter 7(2):463

    Article  CAS  Google Scholar 

  • Banerjee S, Marchetti MC (2012) Contractile stresses in cohesive cell layers on finite-thickness substrates. Phys Rev Lett 109(10):108101

    Article  PubMed  CAS  Google Scholar 

  • Banerjee S, Marchetti MC (2013) Controlling cell-matrix traction forces by extracellular geometry. New J Phys 15(3):035015

    Article  CAS  Google Scholar 

  • Banerjee S, Liverpool TB, Marchetti MC (2011) Generic phases of cross-linked active gels: relaxation, oscillation and contractility. Europhys Lett 96(5):58004

    Article  CAS  Google Scholar 

  • Banerjee S, Utuje KJ, Marchetti MC (2015) Propagating stress waves during epithelial expansion. Phys Rev Lett 114(22):228101

    Article  PubMed  CAS  Google Scholar 

  • Banerjee DS, Munjal A, Lecuit T, Rao M (2017) Actomyosin pulsation and flows in an active elastomer with turnover and network remodeling. Nat Commun 8(1):1121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barton DL, Henkes S, Weijer CJ, Sknepnek R (2017) Active vertex model for cell-resolution description of epithelial tissue mechanics. PLoS Comput Biol 13(6):e1005569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Basan M, Risler T, Joanny JF, Sastre-Garau X, Prost J (2009) Homeostatic competition drives tumor growth and metastasis nucleation. HFSP J 3(4):265

    Article  PubMed  PubMed Central  Google Scholar 

  • Basan M, Elgeti J, Hannezo E, Rappel WJ, Levine H (2013) Alignment of cellular motility forces with tissue flow as a mechanism for efficient wound healing. Proc Nat Acad Sci 110(7):2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begnaud S, Chen T, Delacour D, Mège RM, Ladoux B (2016) Mechanics of epithelial tissues during gap closure. Curr Opin Cell Biol 42:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bement WM, Forscher P, Mooseker MS (1993) A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J Cell Biol 121(3):565

    Article  CAS  PubMed  Google Scholar 

  • Bi D, Lopez J, Schwarz J, Manning ML (2015) A density-independent rigidity transition in biological tissues. Nat Phys 11(12):1074

    Article  CAS  Google Scholar 

  • Bi D, Yang X, Marchetti MC, Manning ML (2016) Motility-driven glass and jamming transitions in biological tissues. Phys Rev X 6(2):021011

    PubMed  PubMed Central  Google Scholar 

  • Bischofs IB, Schmidt SS, Schwarz US (2009) Effect of adhesion geometry and rigidity on cellular force distributions. Phys Rev Lett 103(4):048101

    Article  PubMed  CAS  Google Scholar 

  • Blanch-Mercader C, Casademunt J (2017) Hydrodynamic instabilities, waves and turbulence in spreading epithelia. Soft Matter 13(38):6913

    Article  CAS  PubMed  Google Scholar 

  • Blanch-Mercader C, Vincent R, Bazellières E, Serra-Picamal X, Trepat X, Casademunt J (2017) Effective viscosity and dynamics of spreading epithelia: a solvable model. Soft Matter 13(6):1235

    Article  CAS  PubMed  Google Scholar 

  • Bois JS, Jülicher F, Grill SW (2011) Pattern formation in active fluids. Phys Rev Lett 106(2):028103

    Article  PubMed  CAS  Google Scholar 

  • Bove A, Gradeci D, Fujita Y, Banerjee S, Charras G, Lowe AR (2017) Local cellular neighborhood controls proliferation in cell competition. Mol Biol Cell 28(23):3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brugués A, Anon E, Conte V, Veldhuis JH, Gupta M, Colombelli J, Muñoz JJ, Brodland GW, Ladoux B, Trepat X (2014) Forces driving epithelial wound healing. Nat Phys 10(9):683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Camley BA, Rappel WJ (2017) Physical models of collective cell motility: from cell to tissue. J Phys D Appl Phys 50(11):113002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chopra A, Tabdanov E, Patel H, Janmey PA, Kresh JY (2011) Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing. Am J Physiol Heart Circ Physiol 300(4):H1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochet-Escartin O, Ranft J, Silberzan P, Marcq P (2014) Border forces and friction control epithelial closure dynamics. Biophys J 106(1):65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amico LA, Cooper MS (2001) Morphogenetic domains in the yolk syncytial layer of axiating zebrafish embryos. Dev Dyn 222(4):611

    Article  PubMed  Google Scholar 

  • Deforet M, Hakim V, Yevick HG, Duclos G, Silberzan P (2014) Emergence of collective modes and tri-dimensional structures from epithelial confinement. Nat Commun 5:3747

    Article  CAS  PubMed  Google Scholar 

  • Delanoë-Ayari H, Rieu J, Sano M (2010) 4D traction force microscopy reveals asymmetric cortical forces in migrating Dictyostelium cells. Phys Rev Lett 105(24):248103

    Article  PubMed  CAS  Google Scholar 

  • Discher DE, Janmey P, Wang Yl (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139

    Article  CAS  PubMed  Google Scholar 

  • Doxzen K, Vedula SRK, Leong MC, Hirata H, Gov NS, Kabla AJ, Ladoux B, Lim CT (2013) Guidance of collective cell migration by substrate geometry. Integr Biol 5(8):1026

    Article  CAS  Google Scholar 

  • Duclos G, Garcia S, Yevick H, Silberzan P (2014) Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter 10(14):2346

    Article  CAS  PubMed  Google Scholar 

  • Duclos G, Erlenkämper C, Joanny JF, Silberzan P (2017) Topological defects in confined populations of spindle-shaped cells. Nat Phys 13(1):58

    Article  CAS  Google Scholar 

  • Du Roure O, Saez A, Buguin A, Austin RH, Chavrier P, Siberzan P, Ladoux B (2005) Force mapping in epithelial cell migration. Proc Nat Acad Sci 102(7):2390

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Edwards CM, Schwarz US (2011) Force localization in contracting cell layers. Phys Rev Lett 107(12):128101

    Article  PubMed  CAS  Google Scholar 

  • Farhadifar R, Röper JC, Aigouy B, Eaton S, Jülicher F (2007) The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr Biol 17(24):2095

    Article  CAS  PubMed  Google Scholar 

  • Farooqui R, Fenteany G (2005) Multiple rows of cells behind an epithelial wound edge extend cryptic lamellipodia to collectively drive cell-sheet movement. J Cell Sci 118(1):51

    Article  CAS  PubMed  Google Scholar 

  • Fenteany G, Janmey PA, Stossel TP (2000) Signaling pathways and cell mechanics involved in wound closure by epithelial cell sheets. Curr Biol 10(14):831

    Article  CAS  PubMed  Google Scholar 

  • Fletcher AG, Osterfield M, Baker RE, Shvartsman SY (2014) Vertex models of epithelial morphogenesis. Biophys J 106(11):2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foty RA, Forgacs G, Pfleger CM, Steinberg MS (1994) Surface tensions of embryonic tissues predict their mutual envelopment behavior. Phys Rev Lett 72(14): 2298

    Article  CAS  PubMed  Google Scholar 

  • Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445

    Article  CAS  PubMed  Google Scholar 

  • Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J, Silberzan P, Buguin A, Ladoux B (2008) Traction forces and rigidity sensing regulate cell functions. Soft Matter 4(9):1836

    Article  CAS  Google Scholar 

  • Gonzalez-Rodriguez D, Bonnemay L, Elgeti J, Dufour S, Cuvelier D, Brochard-Wyart F (2013) Detachment and fracture of cellular aggregates. Soft Matter 9(7):2282

    Article  CAS  Google Scholar 

  • Graner F, Glazier JA (1992) Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys Rev Lett 69(13):2013

    Article  CAS  PubMed  Google Scholar 

  • Gross P, Kumar KV, Grill SW (2017) How active mechanics and regulatory biochemistry combine to form patterns in development. Ann Rev Biophys 46:337

    Article  CAS  Google Scholar 

  • Guevorkian K, Colbert MJ, Durth M, Dufour S, Brochard-Wyart F (2010) Aspiration of biological viscoelastic drops. Phys Rev Lett 104(21):218101

    Article  PubMed  CAS  Google Scholar 

  • Guillot C, Lecuit T (2013) Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340(6137):1185

    Article  CAS  PubMed  Google Scholar 

  • Harris AR, Peter L, Bellis J, Baum B, Kabla AJ, Charras GT (2012) Characterizing the mechanics of cultured cell monolayers. Proc Nat Acad Sci 109(41):16449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heisenberg CP, Bellaïche Y (2013) Forces in tissue morphogenesis and patterning. Cell 153(5):948

    Article  CAS  PubMed  Google Scholar 

  • Honda H, Eguchi G (1980) How much does the cell boundary contract in a monolayered cell sheet?. J Theor Biol 84(3):575

    Article  CAS  PubMed  Google Scholar 

  • Howard J, Grill SW, Bois JS (2011) Turing’s next steps: the mechanochemical basis of morphogenesis. Nat Rev Mol Cell Biol 12(6):392

    Article  PubMed  CAS  Google Scholar 

  • Jacinto A, Martinez-Arias A, Martin P (2001) Mechanisms of epithelial fusion and repair. Nat Cell Biol 3(5):E117

    Article  CAS  PubMed  Google Scholar 

  • Kabla AJ (2012) Collective cell migration: leadership, invasion and segregation. J R Soc Interface p. rsif20120448

    Google Scholar 

  • Khalilgharibi N, Fouchard J, Recho P, Charras G, Kabla A (2016) The dynamic mechanical properties of cellularised aggregates. Curr Opin Cell Biol 42:113

    Article  CAS  PubMed  Google Scholar 

  • Khalilgharibi N, Fouchard J, Asadipour N, Yonis A, Harris A, Mosaffa P, Fujita Y, Kabla A, Baum B, Munoz JJ et al (2019) Stress relaxation in epithelial monolayers is controlled by the actomyosin cortex. Nat Phys 15:839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köpf MH, Pismen LM (2013) A continuum model of epithelial spreading. Soft Matter 9(14):3727

    Article  CAS  Google Scholar 

  • Ladoux B, Mège RM (2017) Mechanobiology of collective cell behaviours. Nat Rev Mol Cell Biol 18(12):743

    Article  CAS  PubMed  Google Scholar 

  • Latorre E, Kale S, Casares L, Gómez-González M, Uroz M, Valon L, Nair RV, Garreta E, Montserrat N, del Campo A, Ladoux B, Arroyo M, Trepat X (2018) Active superelasticity in three-dimensional epithelia of controlled shape. Nature 563(7730):203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lecuit T, Lenne PF, Munro E (2011) Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol 27:157

    Article  CAS  PubMed  Google Scholar 

  • Lee P, Wolgemuth CW (2011) Crawling cells can close wounds without purse strings or signaling. PLoS Comput Biol 7(3):e1002007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legant WR, Choi CK, Miller JS, Shao L, Gao L, Betzig E, Chen CS (2013) Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc Nat Acad Sci 110(3):881

    Article  CAS  PubMed  Google Scholar 

  • Levayer R, Lecuit T (2012) Biomechanical regulation of contractility: spatial control and dynamics. Trends Cell Biol 22(2):61

    Article  PubMed  Google Scholar 

  • Li B, Sun SX (2014) Coherent motions in confluent cell monolayer sheets. Biophys J 107(7):1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linsmeier I, Banerjee S, Oakes PW, Jung W, Kim T, Murrell MP (2016) Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility. Nat Commun 7:12615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomakin AJ, Lee KC, Han SJ, Bui DA, Davidson M, Mogilner A, Danuser G (2015) Competition for actin between two distinct F-actin networks defines a bistable switch for cell polarization. Nat Cell Biol 17(11):1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J, Rao M, Simha RA (2013) Hydrodynamics of soft active matter. Rev Mod Phys 85(3):1143

    Article  CAS  Google Scholar 

  • Martin P, Lewis J (1992) Actin cables and epidermal movement in embryonic wound healing. Nature 360(6400):179

    Article  CAS  PubMed  Google Scholar 

  • Maruthamuthu V, Sabass B, Schwarz US, Gardel ML (2011) Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proc Nat Acad Sci 108(12):4708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mertz AF, Banerjee S, Che Y, German GK, Xu Y, Hyland C, Marchetti MC, Horsley V, Dufresne ER (2012) Scaling of traction forces with the size of cohesive cell colonies. Phys Rev Lett 108(19):198101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mertz AF, Che Y, Banerjee S, Goldstein JM, Rosowski KA, Revilla SF, Niessen CM, Marchetti MC, Dufresne ER, Horsley V (2013) Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces. Proc Nat Acad Sci 110(3):842

    Article  CAS  PubMed  Google Scholar 

  • Murray J, Oster G (1984) Cell traction models for generating pattern and form in morphogenesis. J Math Biol 19(3):265

    Article  CAS  PubMed  Google Scholar 

  • Murrell M, Oakes PW, Lenz M, Gardel ML (2015) Forcing cells into shape: the mechanics of actomyosin contractility. Nat Rev Mol Cell Biol 16(8):486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noll N, Mani M, Heemskerk I, Streichan SJ, Shraiman BI (2017) Active tension network model suggests an exotic mechanical state realized in epithelial tissues. Nat Phys 13(12):1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Notbohm J, Banerjee S, Utuje KJ, Gweon B, Jang H, Park Y, Shin J, Butler JP, Fredberg JJ, Marchetti MC (2016) Cellular contraction and polarization drive collective cellular motion. Biophys J 110(12):2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakes PW, Banerjee S, Marchetti MC, Gardel ML (2014) Geometry regulates traction stresses in adherent cells. Biophys J 107(4):825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-González C, Alert R, Blanch-Mercader C, Gómez-González M, Kolodziej T, Bazellieres E, Casademunt J, Trepat X (2018) Active wetting of epithelial tissues. Nat Phys 15(1): 79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petitjean L, Reffay M, Grasland-Mongrain E, Poujade M, Ladoux B, Buguin A, Silberzan P (2010) Velocity fields in a collectively migrating epithelium. Biophys J 98(9):1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips H, Steinberg M (1978) Embryonic tissues as elasticoviscous liquids. I. Rapid and slow shape changes in centrifuged cell aggregates. J Cell Sci 30(1):1

    Google Scholar 

  • Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A, Silberzan P (2007) Collective migration of an epithelial monolayer in response to a model wound. Proc Nat Acad Sci 104(41):15988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prost J (1995) The physics of liquid crystals, vol 83. Oxford university press, Oxford

    Google Scholar 

  • Prost J, Jülicher F, Joanny JF (2015) Active gel physics. Nat Phys 11(2):111

    Article  CAS  Google Scholar 

  • Ranft J, Basan M, Elgeti J, Joanny JF, Prost J, Jülicher F (2010) Fluidization of tissues by cell division and apoptosis. Proc Nat Acad Sci 107(49):20863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravasio A, Le AP, Saw TB, Tarle V, Ong HT, Bertocchi C, Mège RM, Lim CT, Gov NS, Ladoux B (2015a) Regulation of epithelial cell organization by tuning cell-substrate adhesion. Integr Biol 7(10):1228

    Article  CAS  Google Scholar 

  • Ravasio A, Cheddadi I, Chen T, Pereira T, Ong HT, Bertocchi C, Brugues A, Jacinto A, Kabla AJ, Toyama Y, et al (2015b) Gap geometry dictates epithelial closure efficiency. Nat Commun 6:7683

    Article  PubMed  Google Scholar 

  • Recho P, Ranft J, Marcq P (2016) Soft Matter 12:2381

    Article  CAS  PubMed  Google Scholar 

  • Robin FB, Michaux JB, McFadden WM, Munro EM (2018) J Cell Biol, 217(12):4230

    Google Scholar 

  • Roca-Cusachs P, Alcaraz J, Sunyer R, Samitier J, Farré R, Navajas D (2008) Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophys J 94(12):4984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roca-Cusachs P, Conte V, Trepat X (2017) Quantifying forces in cell biology. Nat Cell Biol 19(7):742

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt J, Raff MC, Cramer LP (2001) An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin-and myosin-dependent mechanism. Curr Biol 11(23):1847

    Article  CAS  PubMed  Google Scholar 

  • Saw TB, Doostmohammadi A, Nier V, Kocgozlu L, Thampi S, Toyama Y, Marcq P, Lim CT, Yeomans JM, Ladoux B (2017) Topological defects in epithelia govern cell death and extrusion. Nature 544(7649):212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaumann EN, Staddon MF, Gardel ML, Banerjee S (2018) Force localization modes in dynamic epithelial colonies. Mol Biol Cell 29(23):2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz US, Safran SA (2013) Physics of adherent cells. Rev Mod Phys 85(3):1327

    Article  CAS  Google Scholar 

  • Segerer FJ, Thüroff F, Alberola AP, Frey E, Rädler JO (2015) Emergence and persistence of collective cell migration on small circular micropatterns. Phys Rev Lett 114(22):228102

    Article  PubMed  CAS  Google Scholar 

  • Serra-Picamal X, Conte V, Vincent R, Anon E, Tambe DT, Bazellieres E, Butler JP, Fredberg JJ, Trepat X (2012) Mechanical waves during tissue expansion. Nat Phys 8(8):628

    Article  CAS  Google Scholar 

  • Shraiman BI (2005) Mechanical feedback as a possible regulator of tissue growth. Proc Natl Acad Sci 102(9):3318–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staddon MF, Bi D, Tabatabai AP, Ajeti V, Murrell MP, Banerjee S (2018) Cooperation of dual modes of cell motility promotes epithelial stress relaxation to accelerate wound healing. PLoS Comput Biol 14(10):e1006502

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Style RW, Boltyanskiy R, German GK, Hyland C, MacMinn CW, Mertz AF, Wilen LA, Xu Y, Dufresne ER (2014) Traction force microscopy in physics and biology. Soft Matter 10(23):4047

    Article  CAS  PubMed  Google Scholar 

  • Suarez C, Kovar DR (2016) Internetwork competition for monomers governs actin cytoskeleton organization. Nat Rev Mol Cell Biol 17(12):799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X, Zhou EH, Zaman MH, Butler JP, Weitz DA et al (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10(6):469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanner K, Mori H, Mroue R, Bruni-Cardoso A, Bissell MJ (2012) Coherent angular motion in the establishment of multicellular architecture of glandular tissues. Proc Nat Acad Sci 109(6):1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Théry M (2012) Cell mechanics: Wave of migration. Nat Phys 8(8):583

    Article  CAS  Google Scholar 

  • Théry M, Piel M (2009) Adhesive micropatterns for cells: a microcontact printing protocol. Cold Spring Harb Protoc 2009(7):pdb

    Google Scholar 

  • Trepat X, Wasserman MR, Angelini TE, Millet E, Weitz DA, Butler JP, Fredberg JJ (2009) Physical forces during collective cell migration. Nat Phys 5(6):426

    Article  CAS  Google Scholar 

  • Vedula SRK, Peyret G, Cheddadi I, Chen T, Brugués A, Hirata H, Lopez-Menendez H, Toyama Y, De Almeida LN, Trepat X, et al (2015) Mechanics of epithelial closure over non-adherent environments. Nat Commun 6:6111

    Article  CAS  PubMed  Google Scholar 

  • Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226

    Article  CAS  PubMed  Google Scholar 

  • Vincent R, Bazellières E, Pérez-González C, Uroz M, Serra-Picamal X, Trepat X (2015) Active tensile modulus of an epithelial monolayer. Phys Rev Lett 115(24):248103

    Article  PubMed  CAS  Google Scholar 

  • Walcott S, Sun SX (2010) Cytoskeletal cross-linking and bundling in motor-independent contraction. Proc Nat Acad Sci 107(17):7757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wayne Brodland G, Wiebe CJ (2004) Mechanical effects of cell anisotropy on epithelia. Comput Methods Biomech Biomed Eng 7(2):91

    Article  CAS  Google Scholar 

  • Wood W, Jacinto A, Grose R, Woolner S, Gale J, Wilson C, Martin P (2002) Wound healing recapitulates morphogenesis in Drosophila embryos. Nat Cell Biol 4(11):907

    Article  CAS  PubMed  Google Scholar 

  • Wozniak MA, Chen CS (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 10(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabunaka S, Marcq P (2017) Cell growth, division, and death in cohesive tissues: A thermodynamic approach. Phys Rev E 96(2):022406

    Article  PubMed  Google Scholar 

  • Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ (2004) A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 4(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  • Zemel A, Rehfeldt F, Brown A, Discher D, Safran S (2010) Optimal matrix rigidity for stress-fibre polarization in stem cells. Nat Phys 6(6):468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziebert F, Swaminathan S, Aranson IS (2011) Model for self-polarization and motility of keratocyte fragments. J R Soc Interface p. rsif20110433

    Google Scholar 

Download references

Acknowledgements

SB acknowledges support from a Strategic Fellowship at the Institute for the Physics of Living Systems at UCL, UCL Global Engagement Fund, Royal Society Tata University Research Fellowship (URF\R1\180187), and Human Frontiers Science Program (HFSP RGY0073/2018). MCM was supported by the National Science Foundation at Syracuse University through award DMR-1609208 and at KITP under Grant PHY-1748958, and by the Simons Foundation through a Targeted Grant Award No. 342354. MCM thanks M. Czajkowski for useful discussions and the KITP for hospitality during completion of some of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiladitya Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, S., Marchetti, M.C. (2019). Continuum Models of Collective Cell Migration. In: La Porta, C., Zapperi, S. (eds) Cell Migrations: Causes and Functions. Advances in Experimental Medicine and Biology, vol 1146. Springer, Cham. https://doi.org/10.1007/978-3-030-17593-1_4

Download citation

Publish with us

Policies and ethics