Skip to main content

The Use of Probiotics and Other Microbiota Therapies to Mitigate Recurrent Calcium Oxalate Stone Formation

  • Chapter
  • First Online:
The Role of Bacteria in Urology
  • 721 Accesses

Abstract

Recurrent kidney stone disease caused by calcium oxalate stone formation is a significant problem in clinical urology. While traditional surgical techniques are successful at removing stones once formed, there is no effective treatment that prevents the stones from recurring. As more studies suggest that these diseases can be driven by the hosts’ microbiome, there is potential for treating this disease with the use of probiotics and microbial therapies. Here, we explore some uses of various probiotic bacteria and additional microbiota related therapies such as fecal microbiome transplants to potentially reduce and eliminate recurring calcium oxalate stone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller NL, Lingeman JE. Clinical review management of kidney stones. BMJ. 2007;334:468–72. https://doi.org/10.1136/bmj.39113.480185.80.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Moe OW. Kidney stones: pathophysiology and medical management. Lancet. 2006;367:333–44. https://doi.org/10.1016/S0140-6736(06)68071-9.

    Article  CAS  PubMed  Google Scholar 

  3. Hesse A, Siener R. Current aspects of epidemiology and nutrition in urinary stone disease. World J Urol. 1997;15:165–71. https://doi.org/10.1007/BF02201853.

    Article  CAS  PubMed  Google Scholar 

  4. Evan AP, Worcester EM, Coe FL, Williams J, Lingeman JE. Mechanisms of human kidney stone formation. Urolithiasis. 2015;43:19–32. https://doi.org/10.1007/s00240-014-0701-0.

    Article  PubMed  Google Scholar 

  5. Curhan GC, Willett WC, Speizer FE, Stampfer MJ. Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int. 2001;59:2290–8. https://doi.org/10.1046/j.1523-1755.2001.00746.x.

    Article  CAS  PubMed  Google Scholar 

  6. Massey LK, Roman-Smith H, Sutton RA. Effect of dietary oxalate and calcium on urinary oxalate and risk of formation of calcium oxalate kidney stones. J Am Diet Assoc. 1993;93:901–6. https://doi.org/10.1016/0002-8223(93)91530-4.

    Article  CAS  PubMed  Google Scholar 

  7. Parmar MS. Kidney stones. BMJ. 2004;328:1420–4. https://doi.org/10.1136/bmj.328.7453.1420.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Liebman M, Al-Wahsh IA. Probiotics and other key determinants of dietary oxalate absorption. Adv Nutr. 2011;2:254–60. https://doi.org/10.3945/an.111.000414.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Chaussy C, Schmiedt E, Jocham B, Brendel W, Forssmann B, Walther V. First clinical experience with extracorporeally induced destruction of kidney stones by shock waves. J Urol. 1982;127:417–20. https://doi.org/10.1016/S0022-5347(17)53841-0.

    Article  CAS  PubMed  Google Scholar 

  10. Srisubat A, Potisat S, Lojanapiwat B, Setthawong V, Laopaiboon M. Extracorporeal shock wave lithotripsy (ESWL) versus percutaneous nephrolithotomy (PCNL) or retrograde intrarenal surgery (RIRS) for kidney stones. Cochrane Database Syst Rev. 2014;4:CD007044. https://doi.org/10.1002/14651858.CD007044.pub3.

    Article  Google Scholar 

  11. Drake T, Grivas N, Dabestani S, Knoll T, Lam T, Maclennan S, et al. What are the benefits and harms of ureteroscopy compared with shock-wave lithotripsy in the treatment of upper ureteral stones? A systematic review. Eur Urol. 2017;72:772–86. https://doi.org/10.1016/J.EURURO.2017.04.016.

    Article  PubMed  Google Scholar 

  12. Michel MS, Trojan L, Rassweiler JJ. Complications in percutaneous nephrolithotomy. Eur Urol. 2007;51:899–906. https://doi.org/10.1016/J.EURURO.2006.10.020.

    Article  PubMed  Google Scholar 

  13. Trinchieri A, Ostini F, Nespoli R, Rovera F, Montanari E, Zanetti G. A prospective study of recurrence rate and risk factors for recurrence after a first renal stone. J Urol. 1999;162:27–30. https://doi.org/10.1097/00005392-199907000-00007.

    Article  CAS  PubMed  Google Scholar 

  14. D’Costa MR, Pais VM, Rule AD. Leave no stone unturned: defining recurrence in kidney stone formers. Curr Opin Nephrol Hypertens. 2018; https://doi.org/10.1097/MNH.0000000000000478.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Robertson WG, Peacock M. The cause of idiopathic calcium stone disease: hypercalciuria or hyperoxaluria? Nephron. 1980;26:105–10. https://doi.org/10.1159/000181963.

    Article  CAS  PubMed  Google Scholar 

  16. Noori N, Honarkar E, Goldfarb DS, Kalantar-Zadeh K, Taheri M, Shakhssalim N, et al. Urinary lithogenic risk profile in recurrent stone formers with hyperoxaluria: a randomized controlled trial comparing DASH (Dietary Approaches to Stop Hypertension)-style and low-oxalate diets. Am J Kidney Dis. 2014;63:456–63. https://doi.org/10.1053/J.AJKD.2013.11.022.

    Article  CAS  PubMed  Google Scholar 

  17. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31. https://doi.org/10.1038/nature05414.

    Article  PubMed  Google Scholar 

  18. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4. https://doi.org/10.1038/nature07540.

    Article  CAS  PubMed  Google Scholar 

  19. Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085. https://doi.org/10.1371/journal.pone.0009085.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Mandel NS, Mandel GS. Urinary tract stone disease in the United States veteran population. II. Geographical analysis of variations in composition. J Urol. 1989;142:1516–21. https://doi.org/10.1016/S0022-5347(17)39145-0.

    Article  CAS  PubMed  Google Scholar 

  21. Fisang C, Anding R, Müller SC, Latz S, Laube N. Urolithiasis – an interdisciplinary diagnostic, therapeutic and secondary preventive challenge. Dtsch Arztebl Int. 2015;112:83–91. https://doi.org/10.3238/arztebl.2015.0083.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Hicks LA, Taylor TH, Hunkler RJ. U.S. outpatient antibiotic prescribing, 2010. N Engl J Med. 2013;368:1461–2. https://doi.org/10.1056/NEJMc1212055.

    Article  CAS  PubMed  Google Scholar 

  23. Romero V, Akpinar H, Assimos DG. Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol. 2010;12:e86–96.

    PubMed Central  PubMed  Google Scholar 

  24. Tasian GE, Jemielita T, Goldfarb DS, Copelovitch L, Gerber JS, Wu Q, et al. Oral antibiotic exposure and kidney stone disease. J Am Soc Nephrol. 2018;29:1731–40. https://doi.org/10.1681/ASN.2017111213.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Cameron MA, Sakhaee K, Moe OW. Nephrolithiasis in children. Pediatr Nephrol. 2005;20:1587–92. https://doi.org/10.1007/s00467-005-1883-z.

    Article  PubMed  Google Scholar 

  26. Sas DJ. An update on the changing epidemiology and metabolic risk factors in pediatric kidney stone disease. Clin J Am Soc Nephrol. 2011;6:2062–8. https://doi.org/10.2215/CJN.11191210.

    Article  PubMed  Google Scholar 

  27. Nobel YR, Cox LM, Kirigin FF, Bokulich NA, Yamanishi S, Teitler I, et al. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun. 2015;6:7486. https://doi.org/10.1038/ncomms8486.

    Article  PubMed  Google Scholar 

  28. Kartha GK, Li I, Comhair S, Erzurum SC, Monga M. Co-occurrence of asthma and nephrolithiasis in children. PLoS One. 2017;12:e0168813. https://doi.org/10.1371/journal.pone.0168813.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Huang EY, Inoue T, Leone VA, Dalal S, Touw K, Wang Y, et al. Using corticosteroids to reshape the gut microbiome. Inflamm Bowel Dis. 2015;21:963–72. https://doi.org/10.1097/MIB.0000000000000332.

    Article  PubMed  Google Scholar 

  30. Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun. 2016;7:10410. https://doi.org/10.1038/ncomms10410.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Kharlamb V, Schelker J, Francois F, Jiang J, Holmes RP, Goldfarb DS. Oral antibiotic treatment of Helicobacter pylori leads to persistently reduced intestinal colonization rates with Oxalobacter formigenes. J Endourol. 2011;25:1781–5. https://doi.org/10.1089/end.2011.0243.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kelly JP, Curhan GC, Cave DR, Anderson TE, Kaufman DW. Factors related to colonization with Oxalobacter formigenes in U.S. adults. J Endourol. 2011;25:673–9. https://doi.org/10.1089/end.2010.0462.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Lange JN, Wood KD, Wong H, Otto R, Mufarrij PW, Knight J, et al. Sensitivity of human strains of Oxalobacter formigenes to commonly prescribed antibiotics. Urology. 2012;79:1286–9. https://doi.org/10.1016/J.UROLOGY.2011.11.017.

    Article  PubMed  Google Scholar 

  34. Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65:330–9. https://doi.org/10.1136/gutjnl-2015-309990.

    Article  PubMed  Google Scholar 

  35. Hatch M, Freel RW. The roles and mechanisms of intestinal oxalate transport in oxalate homeostasis. Semin Nephrol. 2008;28:143–51. https://doi.org/10.1016/J.SEMNEPHROL.2008.01.007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hatch M, Freel RW. Angiotensin II involvement in adaptive enteric oxalate excretion in rats with chronic renal failure induced by hyperoxaluria. Urol Res. 2003;31:426–32. https://doi.org/10.1007/s00240-003-0367-5.

    Article  CAS  PubMed  Google Scholar 

  37. Chopra N, Fine PL, Price B, Atlas I. Bilateral hydronephrosis from ciprofloxacin induced crystalluria and stone formation. J Urol. 2000;164:438.

    Article  CAS  PubMed  Google Scholar 

  38. Nash DB. The use of medicines in the United States: a detailed review. Am Heal Drug Benefits. 2012;5:423.

    Google Scholar 

  39. Khan U, Nicell J. Human health relevance of pharmaceutically active compounds in drinking water. AAPS J. 2015;17:558–85. https://doi.org/10.1208/s12248-015-9729-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555:623–8. https://doi.org/10.1038/nature25979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matlaga BR, Shah OD, Assimos DG. Drug-induced urinary calculi. Rev Urol. 2003;5:227–31.

    Google Scholar 

  42. Dalal RP, Goldfarb DS. Melamine-related kidney stones and renal toxicity. Nat Rev Nephrol. 2011;7:267–74. https://doi.org/10.1038/nrneph.2011.24.

    Article  CAS  PubMed  Google Scholar 

  43. Sun X, Shen L, Cong X, Zhu H, Lv J, He L. Infrared spectroscopic analysis of urinary stones (including stones induced by melamine-contaminated milk powder) in 189 Chinese children. J Pediatr Surg. 2011;46:723–8. https://doi.org/10.1016/J.JPEDSURG.2010.09.013.

    Article  PubMed  Google Scholar 

  44. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63. https://doi.org/10.1038/nature12820.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zimmermann DJ, Hesse A, von Unruh GE. Influence of a high-oxalate diet on intestinal oxalate absorption. World J Urol. 2005;23:324–9. https://doi.org/10.1007/s00345-005-0028-0.

    Article  CAS  PubMed  Google Scholar 

  46. Araya M, Morelli L, Reid G, Sanders ME, Stanton C, Pineiro M, et al. Food and Agriculture Organization of the United Nations World Health Organization. 2002.

    Google Scholar 

  47. Brown AC, Valiere A. Probiotics and medical nutrition therapy. Nutr Clin Care. 2004;7:56–68.

    Google Scholar 

  48. Canani RB, Cirillo P, Terrin G, Cesarano L, Spagnuolo MI, De Vincenzo A, et al. Probiotics for treatment of acute diarrhoea in children: randomised clinical trial of five different preparations. BMJ. 2007;335:340. https://doi.org/10.1136/bmj.39272.581736.55.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Knight J, Deora R, Assimos DG, Holmes RP. The genetic composition of Oxalobacter formigenes and its relationship to colonization and calcium oxalate stone disease. Urolithiasis. 2013;41:187–96. https://doi.org/10.1007/s00240-013-0566-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Whiteside SA, Razvi H, Dave S, Reid G, Burton JP. The microbiome of the urinary tract – a role beyond infection. Nat Rev Urol. 2015;12:81–90. https://doi.org/10.1038/nrurol.2014.361.

    Article  PubMed  Google Scholar 

  51. Stewart CS, Duncan SH, Cave DR. Oxalobacter formigenes and its role in oxalate metabolism in the human gut. FEMS Microbiol Lett. 2004;230:1–7. https://doi.org/10.1016/S0378-1097(03)00864-4.

    Article  CAS  PubMed  Google Scholar 

  52. Allison MJ, Dawson KA, Mayberry WR, Foss JG. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol. 1985;141:1–7.

    Article  CAS  PubMed  Google Scholar 

  53. Mittal RD, Kumar R, Bid HK, Mittal B. Effect of antibiotics on Oxalobacter formigenes colonization of human gastrointestinal tract. J Endourol. 2005;19:102–6. https://doi.org/10.1089/end.2005.19.102.

    Article  CAS  PubMed  Google Scholar 

  54. Troxel SA, Sidhu H, Kaul P, Low RK. Intestinal Oxalobacter formigenes colonization in calcium oxalate stone formers and its relation to urinary oxalate. J Endourol. 2003;17:173–6. https://doi.org/10.1089/089277903321618743.

    Article  PubMed  Google Scholar 

  55. Batislam E, Yilmaz E, Yuvanc E, Kisa O, Kisa U. Quantitative analysis of colonization with real-time PCR to identify the role of Oxalobacter formigenes in calcium oxalate urolithiasis. Urol Res. 2012;40:455–60. https://doi.org/10.1007/s00240-011-0449-8.

    Article  PubMed  Google Scholar 

  56. Siener R, Bangen U, Sidhu H, Hönow R, von Unruh G, Hesse A. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int. 2013;83:1144–9.https://doi.org/10.1038/ki.2013.104.

    Article  CAS  PubMed  Google Scholar 

  57. Sidhu H, Allison MJ, Chow JOM, Clark A, Peck A. Rapid reversal of hyperoxaluria in a rat model after probiotic administration of Oxalobacter Formigenes. J Urol. 2001;166:1487–91. https://doi.org/10.1016/S0022-5347(05)65817-X.

    Article  CAS  PubMed  Google Scholar 

  58. Hatch M, Cornelius J, Allison M, Sidhu H, Peck A, Freel RW. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 2006;69:691–8. https://doi.org/10.1038/SJ.KI.5000162.

    Article  CAS  PubMed  Google Scholar 

  59. Hatch M, Gjymishka A, Salido EC, Allison MJ, Freel RW. Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with Oxalobacter. Am J Physiol Liver Physiol. 2011;300:G461–9. https://doi.org/10.1152/ajpgi.00434.2010.

    Article  CAS  PubMed  Google Scholar 

  60. Li X, Ellis ML, Dowell AE, Kumar R, Morrow CD, Schoeb TR, et al. Response of germ-free mice to colonization with O. formigenes and altered Schaedler flora. Appl Environ Microbiol. 2016;82:6952–60. https://doi.org/10.1128/AEM.02381-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Duncan SH, Richardson AJ, Kaul P, Holmes RP, Allison MJ, Stewart CS. Oxalobacter formigenes and its potential role in human health. Appl Environ Microbiol. 2002;68:3841–7. https://doi.org/10.1128/AEM.68.8.3841-3847.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hoppe B, Beck B, Gatter N, von Unruh G, Tischer A, Hesse A, et al. Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int. 2006;70:1305–11. https://doi.org/10.1038/SJ.KI.5001707.

    Article  CAS  PubMed  Google Scholar 

  63. Jairath A, Parekh N, Otano N, Mishra S, Ganpule A, Sabnis R, et al. Oxalobacter formigenes: opening the door to probiotic therapy for the treatment of hyperoxaluria. Scand J Urol. 2015;49:334–7. https://doi.org/10.3109/21681805.2014.996251.

    Article  CAS  PubMed  Google Scholar 

  64. Ellis ML, Shaw KJ, Jackson SB, Daniel SL, Knight J. Analysis of commercial kidney stone probiotic supplements. Urology. 2015;85:517–21. https://doi.org/10.1016/J.UROLOGY.2014.11.013.

    Article  PubMed  Google Scholar 

  65. Campieri C, Campieri M, Bertuzzi V, Swennen E, Matteuzzi D, Stefoni S, et al. Reduction of oxaluria after an oral course of lactic acid bacteria at high concentration. Kidney Int. 2001;60:1097–105. https://doi.org/10.1046/J.1523-1755.2001.0600031097.X.

    Article  CAS  PubMed  Google Scholar 

  66. Okombo J, Liebman M. Probiotic-induced reduction of gastrointestinal oxalate absorption in healthy subjects. Urol Res. 2010;38:169–78. https://doi.org/10.1007/s00240-010-0262-9.

    Article  PubMed  Google Scholar 

  67. Lieske JC, Tremaine WJ, De Simone C, O’Connor HM, Li X, Bergstralh EJ, et al. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 2010;78:1178–85. https://doi.org/10.1038/KI.2010.310.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Salminen S, Isolauri E, Salminen E. Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie Van Leeuwenhoek. 1996;70:347–58. https://doi.org/10.1007/BF00395941.

    Article  CAS  PubMed  Google Scholar 

  69. Sasikumar P, Gomathi S, Anbazhagan K, Abhishek A, Paul E, Vasudevan V, et al. Recombinant Lactobacillus plantarum expressing and secreting heterologous oxalate decarboxylase prevents renal calcium oxalate stone deposition in experimental rats. J Biomed Sci. 2014;21:86. https://doi.org/10.1186/s12929-014-0086-y.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Mufarrij PW, Lange JN, Knight J, Assimos DG, Holmes RP. Second place: the effects of Oxazyme on oxalate degradation: results and implications of in vitro experiments. J Endourol. 2013;27:284–7. https://doi.org/10.1089/end.2012.0214.

    Article  PubMed  Google Scholar 

  71. Jeong BC, Han DH, Seo SI, Jeon SS, Lee HM, Choi HY, et al. YVRK gene recombinant E. coli reduce the concentration of urine oxalate in transient hyperoxaluria rate model. J Urol. 2009;181:660. https://doi.org/10.1016/S0022-5347(09)61851-6.

    Article  Google Scholar 

  72. Lee E, Jeong B, Park Y, Kim H. Expression of the gene encoding oxalate decarboxylase from Bacillus subtilis and characterization of the recombinant enzyme. BMC Res Notes. 2014;7:598. https://doi.org/10.1186/1756-0500-7-598.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Miller AW, Oakeson KF, Dale C, Dearing MD. Microbial community transplant results in increased and long-term oxalate degradation. Microb Ecol. 2016;72:470–8. https://doi.org/10.1007/s00248-016-0800-2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Chanyi RM, Craven L, Harvey B, Reid G, Silverman MJ, Burton JP. Faecal microbiota transplantation: where did it start? What have studies taught us? Where is it going? SAGE Open Med. 2017;5:205031211770871. https://doi.org/10.1177/2050312117708712.

    Article  Google Scholar 

  75. Vrieze A, de Groot PF, Kootte RS, Knaapen M, van Nood E, Nieuwdorp M. Fecal transplant: a safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease? Best Pract Res Clin Gastroenterol. 2013;27:127–37. https://doi.org/10.1016/J.BPG.2013.03.003.

    Article  CAS  PubMed  Google Scholar 

  76. Borody TJ, Khoruts A. Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol. 2012;9:88–96. https://doi.org/10.1038/nrgastro.2011.244.

    Article  CAS  Google Scholar 

  77. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JFWM, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–916.e7. https://doi.org/10.1053/J.GASTRO.2012.06.031.

    Article  CAS  PubMed  Google Scholar 

  78. Petrof EO, Khoruts A. From stool transplants to next-generation microbiota therapeutics. Gastroenterology. 2014;146:1573–82. https://doi.org/10.1053/J.GASTRO.2014.01.004.

    Article  PubMed  Google Scholar 

  79. Alang N, Kelly CR. Weight gain after fecal microbiota transplantation. Open Forum Infect Dis. 2015;2:ofv004. https://doi.org/10.1093/ofid/ofv004.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy P. Burton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brennan, L., Al, K.F., Bjazevic, J., Razvi, H., Burton, J.P. (2019). The Use of Probiotics and Other Microbiota Therapies to Mitigate Recurrent Calcium Oxalate Stone Formation. In: Lange, D., Scotland, K. (eds) The Role of Bacteria in Urology. Springer, Cham. https://doi.org/10.1007/978-3-030-17542-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17542-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17541-2

  • Online ISBN: 978-3-030-17542-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics