Skip to main content

Overview of Urinary Tract Infections

  • Chapter
  • First Online:
The Role of Bacteria in Urology

Abstract

Traditionally, both the urinary tract and urine were thought to be sterile. However, recent evidence seems to suggest the presence of a urinary tract microbiome, which is believed to play a significant role in maintaining overall urinary health (Whiteside et al. Nat Rev Urol 12(2):81–90, 2015). Similar to the intestinal microbiome, the urinary tract microbiome likely plays a role in host protection by preventing uropathogens from colonizing and in turn, causing urinary tract infections (UTIs). However, when uropathogens are successful in establishing infection, these infections can be classified into upper or lower UTIs. Lower UTIs involve the bladder (cystitis), urethra (urethritis) and prostate (prostatitis). Upper UTIs involve the kidneys and are also considered ascending infections due to bacteria ascending from the bladder to the kidneys. This chapter will provide an overview of UTIs and discuss some of the most common pathogens involved. Prostatitis will be discussed in a separate chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whiteside SA, Razvi H, Dave S, Reid G, Burton JP. The microbiome of the urinary tract – a role beyond infection. Nat Rev Urol. 2015;12(2):81–90.

    Article  PubMed  Google Scholar 

  2. Jepson RG, Craig JC. A systematic review of the evidence for cranberries and blueberries in UTI prevention. Mol Nutr Food Res. 2007;51(6):738–45.

    Article  CAS  PubMed  Google Scholar 

  3. Katchman EA, Milo G, Paul M, Christiaens T, Baerheim A, Leibovici L. Three-day vs longer duration of antibiotic treatment for cystitis in women: systematic review and meta-analysis. Am J Med. 2005;118(11):1196–207.

    Article  CAS  PubMed  Google Scholar 

  4. Micali S, Isgro G, Bianchi G, Miceli N, Calapai G, Navarra M. Cranberry and recurrent cystitis: more than marketing? Crit Rev Food Sci Nutr. 2014;54(8):1063–75.

    Article  CAS  PubMed  Google Scholar 

  5. Colgan R, Williams M. Diagnosis and treatment of acute uncomplicated cystitis. Am Fam Physician. 2011;84(7):771–6.

    PubMed  Google Scholar 

  6. Dhakal BK, Kulesus RR, Mulvey MA. Mechanisms and consequences of bladder cell invasion by uropathogenic Escherichia coli. Eur J Clin Investig. 2008;38(Suppl 2):2–11.

    Article  CAS  Google Scholar 

  7. Abrahamian FM, Krishnadasan A, Mower WR, Moran GJ, Coker JR, Talan DA. The association of antimicrobial resistance with cure and quality of life among women with acute uncomplicated cystitis. Infection. 2011;39(6):507–14.

    Article  CAS  PubMed  Google Scholar 

  8. Araujo SM, Mourao TC, Oliveira JL, Melo IF, Araujo CA, Araujo NA, et al. Antimicrobial resistance of uropathogens in women with acute uncomplicated cystitis from primary care settings. Int Urol Nephrol. 2011;43(2):461–6.

    Article  CAS  PubMed  Google Scholar 

  9. Srivastava R, Agarwal J, Srivastava S, Mishra B. Role of special pathogenicity versus prevalence theory in pathogenesis of acute cystitis caused by Escherichia coli. J Med Microbiol. 2014;63(Pt 8):1038–43.

    Article  CAS  PubMed  Google Scholar 

  10. Naber KG. Treatment options for acute uncomplicated cystitis in adults. J Antimicrob Chemother. 2000;46(Suppl 1):23–7; discussion 63–5

    Article  CAS  PubMed  Google Scholar 

  11. Kline KA, Lewis AL. Gram-positive uropathogens, polymicrobial urinary tract infection, and the emerging microbiota of the urinary tract. Microbiol Spectr. 2016;4(2):1–31. https://doi.org/10.1128/microbiolspec.UTI-0012-2012.

    Article  CAS  Google Scholar 

  12. Nosseir SB, Lind LR, Winkler HA. Recurrent uncomplicated urinary tract infections in women: a review. J Womens Health (Larchmt). 2012;21(3):347–54.

    Article  Google Scholar 

  13. Kline KA, Ingersoll MA, Nielsen HV, Sakinc T, Henriques-Normark B, Gatermann S, et al. Characterization of a novel murine model of Staphylococcus saprophyticus urinary tract infection reveals roles for Ssp and SdrI in virulence. Infect Immun. 2010;78(5):1943–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loes AN, Ruyle L, Arvizu M, Gresko KE, Wilson AL, Deutch CE. Inhibition of urease activity in the urinary tract pathogen Staphylococcus saprophyticus. Lett Appl Microbiol. 2014;58(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  15. King NP, Sakinc T, Ben Zakour NL, Totsika M, Heras B, Simerska P, et al. Characterisation of a cell wall-anchored protein of Staphylococcus saprophyticus associated with linoleic acid resistance. BMC Microbiol. 2012;12:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huycke MM, Sahm DF, Gilmore MS. Multiple-drug resistant enterococci: the nature of the problem and an agenda for the future. Emerg Infect Dis. 1998;4(2):239–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shankar N, Lockatell CV, Baghdayan AS, Drachenberg C, Gilmore MS, Johnson DE. Role of Enterococcus faecalis surface protein Esp in the pathogenesis of ascending urinary tract infection. Infect Immun. 2001;69(7):4366–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nallapareddy SR, Singh KV, Sillanpää J, Garsin DA, Höök M, Erlandsen SL, et al. Endocarditis and biofilm-associated pili of Enterococcus faecalis. J Clin Investig. 2006;116(10):2799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frank KL, Guiton PS, Barnes AMT, Manias DA, Chuang-Smith ON, Kohler PL, et al. AhrC and Eep are biofilm infection-associated virulence factors in Enterococcus faecalis. Infect Immun. 2013;81(5):1696–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roh JH, Singh KV, La Rosa SL, Cohen ALV, Murray BE. The two-component system GrvRS (EtaRS) regulates ace expression in Enterococcus faecalis OG1RF. Infect Immun. 2015;83(1):389–95.

    Article  PubMed  Google Scholar 

  21. Kemp KD, Singh KV, Nallapareddy SR, Murray BE. Relative contributions of Enterococcus faecalis OG1RF sortase-encoding genes, srtA and bps (srtC), to biofilm formation and a murine model of urinary tract infection. Infect Immun. 2007;75(11):5399–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guiton PS, Hung CS, Hancock LE, Caparon MG, Hultgren SJ. Enterococcal biofilm formation and virulence in an optimized murine model of foreign body-associated urinary tract infections. Infect Immun. 2010;78(10):4166–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dunny GM, Leonard BA, Hedberg PJ. Pheromone-inducible conjugation in Enterococcus faecalis: interbacterial and host-parasite chemical communication. J Bacteriol. 1995;177(4):871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vanek NN, Simon SI, Jacques-Palaz K, Mariscalco MM, Dunny GM, Rakita RM. Enterococcus faecalis aggregation substance promotes opsonin-independent binding to human neutrophils via a complement receptor type 3-mediated mechanism1. FEMS Immunol Med Microbiol. 2006;26(1):49–60.

    Article  Google Scholar 

  25. Süßmuth SD, Muscholl-Silberhorn A, Wirth R, Susa M, Marre R, Rozdzinski E. Aggregation substance promotes adherence, phagocytosis, and intracellular survival of Enterococcus faecalis within human macrophages and suppresses respiratory burst. Infect Immun. 2000;68(9):4900–6.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wirth R. The sex pheromone system of Enterococcus faecalis. Eur J Biochem. 1994;222(2):235–46.

    Article  CAS  PubMed  Google Scholar 

  27. Thurlow LR, Thomas VC, Narayanan S, Olson S, Fleming SD, Hancock LE. Gelatinase contributes to the pathogenesis of endocarditis caused by Enterococcus faecalis. Infect Immun. 2010;78(11):4936–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Park SY, Kim KM, Lee JH, Seo SJ, Lee IH. Extracellular gelatinase of Enterococcus faecalis destroys a defense system in insect hemolymph and human serum. Infect Immun. 2007;75(4):1861–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Teixeira N, Santos S, Marujo P, Yokohata R, Iyer VS, Nakayama J, et al. The incongruent gelatinase genotype and phenotype in Enterococcus faecalis are due to shutting off the ability to respond to the gelatinase biosynthesis-activating pheromone (GBAP) quorum-sensing signal. Microbiology. 2012;158(Pt 2):519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park SY, Shin YP, Kim CH, Park HJ, Seong YS, Kim BS, et al. Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b. J Immunol. 2008;181(9):6328.

    Article  CAS  PubMed  Google Scholar 

  31. Zou J, Baghdayan AS, Payne SJ, Shankar N. A TIR domain protein from E. faecalis attenuates MyD88-mediated signaling and NF-κB activation. PLoS One. 2014;9(11):e112010.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ulett GC, Webb RI, Ulett KB, Cui X, Benjamin WH, Crowley M, et al. Group B streptococcus (GBS) urinary tract infection involves binding of GBS to bladder uroepithelium and potent but GBS-specific induction of interleukin 1α. J Infect Dis. 2010;201(6):866–70.

    Article  PubMed  Google Scholar 

  33. Kline KA, Schwartz DJ, Lewis WG, Hultgren SJ, Lewis AL. Immune activation and suppression by group B streptococcus in a murine model of urinary tract infection. Infect Immun. 2011;79(9):3588–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kulkarni R, Randis TM, Antala S, Wang A, Amaral FE, Ratner AJ. β-hemolysin/cytolysin of group B streptococcus enhances host inflammation but is dispensable for establishment of urinary tract infection. PLoS One. 2013;8(3):e59091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leclercq SY, Sullivan MJ, Ipe DS, Smith JP, Cripps AW, Ulett GC. Pathogenesis of Streptococcus urinary tract infection depends on bacterial strain and β-hemolysin/cytolysin that mediates cytotoxicity, cytokine synthesis, inflammation and virulence. Sci Rep. 2016;6:29000.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Christopher Chapple AM. Acute cystitis. BMJ Publishing Group; 2018. Updated May 2018. Available from: https://bestpractice-bmj-com.ezproxy.library.ubc.ca/topics/en-us/298.

  37. Little P, Moore MV, Turner S, Rumsby K, Warner G, Lowes JA, et al. Effectiveness of five different approaches in management of urinary tract infection: randomised controlled trial. BMJ. 2010;340:c199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Foxman B, Frerichs RR. Epidemiology of urinary tract infection: II. Diet, clothing, and urination habits. Am J Public Health. 1985;75(11):1314–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Barbosa-Cesnik C, Brown MB, Buxton M, Zhang L, DeBusscher J, Foxman B. Cranberry juice fails to prevent recurrent urinary tract infection: results from a randomized placebo-controlled trial. Clin Infect Dis. 2011;52(1):23–30.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Frassetto LA. Acute pyelonephritis. BMJ Publishing Group; 2018. Updated October 2018. Available from: https://bestpractice-bmj-com.ezproxy.library.ubc.ca/topics/en-us/551.

  41. Prabhu A, Taylor P, Konecny P, Brown MA. Pyelonephritis: what are the present day causative organisms and antibiotic susceptibilities? Nephrology (Carlton). 2013;18(6):463–7.

    Article  Google Scholar 

  42. Wright WF, ebrary eBooks. Essentials of clinical infectious diseases. New York: Demos Medical; 2013. Available from: Click here for full text http://GW2JH3XR2C.search.serialssolutions.com/?sid=sersol&SS_jc=TC0000833157&title=Essentials%20of%20clinical%20infectious%20diseases.

    Google Scholar 

  43. Johnson JR. Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev. 1991;4(1):80–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev. 1998;11(4):589–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rozalski A, Sidorczyk Z, Kotelko K. Potential virulence factors of Proteus bacilli. Microbiol Mol Biol Rev. 1997;61(1):65–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chippendale GR, Warren JW, Trifillis AL, Mobley HL. Internalization of Proteus mirabilis by human renal epithelial cells. Infect Immun. 1994;62(8):3115–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Connell H, Hedlund M, Agace W, Svanborg C. Bacterial attachment to uro-epithelial cells: mechanisms and consequences. Adv Dent Res. 1997;11(1):50–8.

    Article  CAS  PubMed  Google Scholar 

  48. Silverblatt FJ, Ofek I. Influence of pili on the virulence of Proteus mirabilis in experimental hematogenous pyelonephritis. J Infect Dis. 1978;138(5):664–7.

    Article  CAS  PubMed  Google Scholar 

  49. Chassin C, Goujon JM, Darche S, du Merle L, Bens M, Cluzeaud F, et al. Renal collecting duct epithelial cells react to pyelonephritis-associated Escherichia coli by activating distinct TLR4-dependent and -independent inflammatory pathways. J Immunol. 2006;177(7):4773–84.

    Article  CAS  PubMed  Google Scholar 

  50. Jacobson SH, Hylander B, Wretlind B, Brauner A. Interleukin-6 and interleukin-8 in serum and urine in patients with acute pyelonephritis in relation to bacterial-virulence-associated traits and renal function. Nephron. 1994;67(2):172–9.

    Article  CAS  PubMed  Google Scholar 

  51. Shimamura T. Mechanisms of renal tissue destruction in an experimental acute pyelonephritis. Exp Mol Pathol. 1981;34(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  52. Johnson DE, Russell RG, Lockatell CV, Zulty JC, Warren JW, Mobley HL. Contribution of Proteus mirabilis urease to persistence, urolithiasis, and acute pyelonephritis in a mouse model of ascending urinary tract infection. Infect Immun. 1993;61(7):2748–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Johnson JR, Kuskowski MA, Gajewski A, Soto S, Horcajada JP, Jimenez de Anta MT, et al. Extended virulence genotypes and phylogenetic background of Escherichia coli isolates from patients with cystitis, pyelonephritis, or prostatitis. J Infect Dis. 2005;191(1):46–50.

    Article  PubMed  Google Scholar 

  54. Johnson DE, Lockatell CV, Russell RG, Hebel JR, Island MD, Stapleton A, et al. Comparison of Escherichia coli strains recovered from human cystitis and pyelonephritis infections in transurethrally challenged mice. Infect Immun. 1998;66(7):3059–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Morris S. Urethritis. BMJ Publishing Group; 2018. Updated January 2018. Available from: https://bestpractice-bmj-com.ezproxy.library.ubc.ca/topics/en-us/54.

  56. Farhat W, McLorie G. Urethral syndromes in children. Pediatr Rev. 2001;22(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  57. Bradshaw CS, Tabrizi SN, Read TR, Garland SM, Hopkins CA, Moss LM, et al. Etiologies of nongonococcal urethritis: bacteria, viruses, and the association with orogenital exposure. J Infect Dis. 2006;193(3):336–45.

    Article  PubMed  Google Scholar 

  58. Brill JR. Diagnosis and treatment of urethritis in men. Am Fam Physician. 2010;81(7):873–8.

    PubMed  Google Scholar 

  59. Bachir BG, Jarvi K. Infectious, inflammatory, and immunologic conditions resulting in male infertility. Urol Clin North Am. 2014;41(1):67–81.

    Article  PubMed  Google Scholar 

  60. Moulder JW. Interaction of chlamydiae and host cells in vitro. Microbiol Rev. 1991;55(1):143–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Abdelrahman YM, Belland RJ. The chlamydial developmental cycle. FEMS Microbiol Rev. 2005;29(5):949–59.

    Article  CAS  PubMed  Google Scholar 

  62. van Ooij C, Apodaca G, Engel J. Characterization of the Chlamydia trachomatis vacuole and its interaction with the host endocytic pathway in HeLa cells. Infect Immun. 1997;65(2):758–66.

    PubMed  PubMed Central  Google Scholar 

  63. Clifton DR, Fields KA, Grieshaber SS, Dooley CA, Fischer ER, Mead DJ, et al. A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc Natl Acad Sci U S A. 2004;101(27):10166–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Vonck RA, Darville T, O’Connell CM, Jerse AE. Chlamydial infection increases gonococcal colonization in a novel murine coinfection model. Infect Immun. 2011;79(4):1566–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Berger A. Th1 and Th2 responses: what are they? BMJ. 2000;321(7258):424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Burgos R, Pich OQ, Ferrer-Navarro M, Baseman JB, Querol E, Pinol J. Mycoplasma genitalium P140 and P110 cytadhesins are reciprocally stabilized and required for cell adhesion and terminal-organelle development. J Bacteriol. 2006;188(24):8627–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ueno PM, Timenetsky J, Centonze VE, Wewer JJ, Cagle M, Stein MA, et al. Interaction of Mycoplasma genitalium with host cells: evidence for nuclear localization. Microbiology. 2008;154(Pt 10):3033–41.

    Article  CAS  PubMed  Google Scholar 

  68. Taylor-Robinson D, Jensen JS. Mycoplasma genitalium: from Chrysalis to multicolored butterfly. Clin Microbiol Rev. 2011;24(3):498–514.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mernaugh GR, Dallo SF, Holt SC, Baseman JB. Properties of adhering and nonadhering populations of Mycoplasma genitalium. Clin Infect Dis. 1993;17(Suppl 1):S69–78.

    Article  PubMed  Google Scholar 

  70. Wu Y, Qiu H, Zeng Y, You X, Deng Z, Yu M, et al. Mycoplasma genitalium lipoproteins induce human monocytic cell expression of proinflammatory cytokines and apoptosis by activating nuclear factor kappaB. Mediat Inflamm. 2008;2008:195427.

    Article  Google Scholar 

  71. Edwards JL, Apicella MA. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev. 2004;17(4):965–81, table of contents

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nassif X, Pujol C, Morand P, Eugene E. Interactions of pathogenic Neisseria with host cells. Is it possible to assemble the puzzle? Mol Microbiol. 1999;32(6):1124–32.

    Article  CAS  PubMed  Google Scholar 

  73. van Putten JP, Paul SM. Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J. 1995;14(10):2144–54.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wen KK, Giardina PC, Blake MS, Edwards J, Apicella MA, Rubenstein PA. Interaction of the gonococcal porin P.IB with G- and F-actin. Biochemistry. 2000;39(29):8638–47.

    Article  CAS  PubMed  Google Scholar 

  75. Wang JA, Meyer TF, Rudel T. Cytoskeleton and motor proteins are required for the transcytosis of Neisseria gonorrhoeae through polarized epithelial cells. Int J Med Microbiol. 2008;298(3–4):209–21.

    Article  CAS  PubMed  Google Scholar 

  76. Naumann M, Wessler S, Bartsch C, Wieland B, Meyer TF. Neisseria gonorrhoeae epithelial cell interaction leads to the activation of the transcription factors nuclear factor kappaB and activator protein 1 and the induction of inflammatory cytokines. J Exp Med. 1997;186(2):247–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Workowski KA, Berman S. Sexually transmitted diseases treatment guidelines, 2010. MMWR Recomm Rep. 2010;59(Rr-12):1–110.

    PubMed  Google Scholar 

  78. Thomas-White K, Brady M, Wolfe AJ, Mueller ER. The bladder is not sterile: history and current discoveries on the urinary microbiome. Curr Bladder Dysfunct Rep. 2016;11(1):18–24.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hilt EE, McKinley K, Pearce MM, Rosenfeld AB, Zilliox MJ, Mueller ER, et al. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial Flora in the adult female bladder. J Clin Microbiol. 2014;52(3):871.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Lange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chan, J.Y.H., Scotland, K.B., Lange, D. (2019). Overview of Urinary Tract Infections. In: Lange, D., Scotland, K. (eds) The Role of Bacteria in Urology. Springer, Cham. https://doi.org/10.1007/978-3-030-17542-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17542-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17541-2

  • Online ISBN: 978-3-030-17542-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics