Skip to main content

Covariance Matrix Regularization for Banded Toeplitz Structure via Frobenius-Norm Discrepancy

  • Conference paper
  • First Online:
Matrices, Statistics and Big Data (IWMS 2016)

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Included in the following conference series:

Abstract

In many practical applications, the structure of covariance matrix is often blurred due to random errors, making the estimation of covariance matrix very difficult particularly for high-dimensional data. In this article, we propose a regularization method for finding a possible banded Toeplitz structure for a given covariance matrix A (e.g., sample covariance matrix), which is usually an estimator of the unknown population covariance matrix Σ. We aim to find a matrix, say B, which is of banded Toeplitz structure, such that the Frobenius-norm discrepancy between B and A achieves the smallest in the whole class of banded Toeplitz structure matrices. As a result, the obtained Toeplitz structured matrix B recoveries the underlying structure behind Σ. Our simulation studies show that B is also more accurate than the sample covariance matrix A when estimating the covariance matrix Σ that has a banded Toeplitz structure. The studies also show that the proposed method works very well in regularization of covariance structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belloni, A., Chernozhukov, V., & Wang, L. (2012). Square-root lasso: Pivotal recovery of sparse signals via conic programming. Biometrika, 98, 791–806.

    Article  MathSciNet  Google Scholar 

  2. Bickel, P., & Levina, E. (2008). Covariance regularization by thresholding. Annals of Statistics, 36, 2577–2604.

    Article  MathSciNet  Google Scholar 

  3. Burg, J. P., Luenberger, D. G., & Wenger, D. L. (1982). Estimation of structured covariance matrices. Proceedings of the IEEE, 70(9), 963–974.

    Article  Google Scholar 

  4. Cai, T., & Liu, W. (2011). Adaptive thresholding for sparse covariance estimation. Journal of the American Statistical Association, 106, 672–684.

    Article  MathSciNet  Google Scholar 

  5. Chakraborty, M. (1998). An efficient algorithm for solving general periodic Toeplitz systems. IEEE Transactions on Signal Processing, 46(3), 784–787.

    Article  MathSciNet  Google Scholar 

  6. Cui, X., Li, C., Zhao, J., Zeng, L., Zhang, D. & Pan, J. (2016). Regularization for high-dimensional covariance matrix. Special Matrices, 4, 189–201.

    Article  MathSciNet  Google Scholar 

  7. Cui, X., Li, C., Zhao, J., Zeng, L., Zhang, D., & Pan, J. (2016). Covariance structure regularization via Frobenius-norm discrepancy. Linear Algebra and Its Applications, 510, 124–145.

    Article  MathSciNet  Google Scholar 

  8. Deng, X., & Tsui, K. (2013). Penalized covariance matrix estimation using a matrix-logarithm transformation. Journal of Computational and Graphical Statistics, 22, 494–512.

    Article  MathSciNet  Google Scholar 

  9. El Karoui, N. (2008). Operator norm consistent estimation of large dimensional sparse covariance matrices. Annals of Statistics, 36, 2712–2756.

    MathSciNet  MATH  Google Scholar 

  10. Fan, J., Liao, Y., & Mincheva, M. (2013). Large covariance estimation by thresholding principal orthogonal complements. Journal of Royal Statistical Society Series B, 75, 656–658.

    MathSciNet  MATH  Google Scholar 

  11. Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Annals of Statistics, 29, 295–327.

    Article  MathSciNet  Google Scholar 

  12. Lin, L., Higham, N. J., & Pan, J. (2014). Covariance structure regularization via entropy loss function. Computational Statistics & Data Analysis, 72, 315–327.

    Article  MathSciNet  Google Scholar 

  13. Moura, J. M. F., & Balram, N. (1992). Recursive structure of noncausal gauss-markov random fields. IEEE Transactions on Information Theory, 38(2), 334–354.

    Article  Google Scholar 

  14. Pan, J., & Mackenzie, G. (2003). On modelling mean-covariance structures in longitudinal studies. Biometrika, 90(1), 239–244.

    Article  MathSciNet  Google Scholar 

  15. Parter, S. V. (1962). An observation on the numerical solution of difference equations and a theorem of Szegö. Numerische Mathematik, 4, 293–295.

    Article  MathSciNet  Google Scholar 

  16. Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation. Biometrika, 86(3), 677–690.

    Article  MathSciNet  Google Scholar 

  17. Rothman, A. (2012). Positive definite estimators of large covariance matrices. Biometrika, 99, 733–740.

    Article  MathSciNet  Google Scholar 

  18. Rothman, A., Levina, E., & Zhu, J. (2009). Generalized thresholding of large covariance matrices. Journal of the American Statistical Association, 104, 177–186.

    Article  MathSciNet  Google Scholar 

  19. Woods, J. W. (1972). Two-dimensional discrete markovian fields. IEEE Transactions on Information Theory, 18(2), 232–240.

    Article  MathSciNet  Google Scholar 

  20. Xue, L., Ma, S., & Zou, H. (2012). Positive definite 1 penalized estimation of large covariance matrices (2012). Journal of the American Statistical Association, 107, 1480–1491.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge very constructive comments and suggestions by the Editors and one anonymous reviewer, which lead to significant improvements to the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxin Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, X., Li, Z., Zhao, J., Zhang, D., Pan, J. (2019). Covariance Matrix Regularization for Banded Toeplitz Structure via Frobenius-Norm Discrepancy. In: Ahmed, S., Carvalho, F., Puntanen, S. (eds) Matrices, Statistics and Big Data. IWMS 2016. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-17519-1_9

Download citation

Publish with us

Policies and ethics