Skip to main content

131I-MIBG Therapy of Malignant Neuroblastoma and Pheochromocytoma

  • Chapter
  • First Online:
Nuclear Medicine Therapy

Abstract

Neuroblastoma (NB), the most common extracranial tumor of pediatric age, arises in the adrenal medulla or paraspinal sympathetic ganglia, and presents as neck, chest, or abdomen mass; around 50% of NB are metastatic at diagnosis. Catecholamine and metanephrine levels are increased in 90% of patients and are used for the biochemical diagnosis. 123I-meta-iodobenzylguanidine (MIBG) scintigraphy is a fundamental diagnostic technique for the diagnosis, staging, and restaging of NB. The therapeutic approach for high-risk NB includes induction chemotherapy, followed by surgery and subsequent myeloablative chemotherapy associated to autologous hematopoietic stem cell transplantation. 131I-MIBG therapy is mostly indicated in high-risk NB patients with evidence of persistence of MIBG-avid metastatic disease, and has an overall response of 30%. 131I-MIBG therapy is generally safe but acute toxicity (nausea, anorexia, and vomiting) can occur. Hematological toxicity (anemia, leukocytopenia, and mostly thrombocytopenia) usually appears 2–4 weeks after infusion, the recovery can be very slow, and sometimes requires stem cell support. Long-term secondary malignancies are rare.

Pheochromocytomas (PCCs) and paragangliomas (PPGs) originate in the adrenal medulla and in the extra-adrenal ganglia; malignancy occurs in 10% of PCCS and 20–40% of PPGs. Symptoms are multifaceted and related to an excessive and often paroxystic secretion of catecholamines; hypertension, usually resistant or paroxysmal, is the most life-threatening. After withdrawal of any interfering drug, the finding of elevated (>3 times the upper normal value) 24-h urinary metanephrine levels are suggestive for the diagnosis. Computed tomography or magnetic resonance imaging has a high sensitivity for detecting primary tumor, whereas 18F-fluorodeoxyglucose positron emission tomography is the most sensitive method for assessing metastatic disease. Surgery remains the mainstay of therapy whenever possible, but requires a proper α- and β-adrenergic blockade. 131I-MIBG therapy is indicated in all cases with inoperable PPCs and PPGs; in addition, patients with metastatic disease, in course of progression and/or intractable pain, can be considered eligible for MIBG therapy. Functional scintigraphy with 123I-MIBG is used to determine which patients, usually 50–60%, are candidates for targeted radiotherapy with 131I-MIBG, which causes tumor reduction in less than 50% of patients but symptom relief up to 80%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monclair T, Brodeur GM, Ambros PF, Brisse HJ, Cecchetto G, Holmes K, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG task force report. J Clin Oncol. 2009;27:298–303.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am. 2010;24:65–86.

    Article  PubMed  Google Scholar 

  3. Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer. 2003;3:203–16.

    Article  CAS  PubMed  Google Scholar 

  4. Rohrer T, Trachsel D, Engelcke G, Hammer J. Congenital central hypoventilation syndrome associated with Hirschsprung’s disease and neuroblastoma: case of multiple neurocristopathies. Pediatr Pulmonol. 2002;33:71–6.

    Article  PubMed  Google Scholar 

  5. Trigg RM, Turner SD. ALK in neuroblastoma: biological and therapeutic implications. Cancers. 2018;10:10.

    Article  Google Scholar 

  6. Cohn SL, Pearson AD, London WB, Monclair T, Ambros PF, Brodeur GM, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG task force report. J Clin Oncol. 2009;27:289–97.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Beiske K, Burchill SA, Cheung IY, Hiyama E, Seeger RC, Cohn SL, et al. Consensus criteria for sensitive detection of minimal neuroblastoma cells in bone marrow, blood and stem cell preparations by immunocytology and QRT-PCR: recommendations by the International Neuroblastoma Risk Group Task Force. Br J Cancer. 2009;100:1627–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ambros PF, Ambros IM, Brodeur GM, Haber M, Khan J, Nakagawara A, et al. International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) Biology Committee. Br J Cancer. 2009;100:1471–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matthay KK, Shulkin B, Ladenstein R, Michon J, Giammarile F, Lewington V, et al. Criteria for evaluation of disease extent by (123)I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) task force. Br J Cancer. 2010;102:1319–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brisse HJ, McCarville MB, Granata C, Krug KB, Wootton-Gorges SL, Kanegawa K, et al. Guidelines for imaging and staging of neuroblastic tumors: consensus report from the International Neuroblastoma Risk Group project. Radiology. 2011;261:243–57.

    Article  PubMed  Google Scholar 

  11. Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362:2202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF, et al. Advances in risk classification and treatmentstrategies for neuroblastoma. J Clin Oncol. 2015;33:3008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Canete A, Gerrard M, Rubie H, Castel V, Di Cataldo A, Munzer C, et al. Poor survival for infants with MYCN-amplified metastatic neuroblastoma despite intensified treatment: the International Society of Paediatric Oncology European Neuroblastoma Experience. J Clin Oncol. 2009;27:1014–9.

    Article  PubMed  Google Scholar 

  14. Garaventa A, Boni L, Lo Piccolo MS, Tonini GP, Gambini C, Mancini A, et al. Localized unresectable neuroblastoma: results of treatment based on clinical prognostic factors. Ann Oncol. 2002;13:956–64.

    Article  CAS  PubMed  Google Scholar 

  15. Tanabe M, Takahashi H, Ohnuma N, Iwai J, Yoshida H. Evaluation of bone marrow metastasis of neuroblastoma and changes after chemotherapy by MRI. Med Pediatr Oncol. 1993;21:54–9.

    Article  CAS  PubMed  Google Scholar 

  16. Wilson JS, Gains JE, Moroz V, Wheatley K, Gaze MN. A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur J Cancer. 2014;50:801–15.

    Article  CAS  PubMed  Google Scholar 

  17. Castellani MR, Scarale A, Lorenzoni A, Maccauro M, Balaguer Guill J, Luksch R. Treatment with 131I-MIBG (indications, procedures and results) Chapter 19. In: Bombardieri E, editor. Clinical applications of nuclear medicine targeted therapy. Basingstoke: Springer Nature; 2018.

    Google Scholar 

  18. Shulkin BL, Shapiro B, Francis IR, et al. Primary extra-adrenal pheochromocytoma: positive I-123 MIBG imaging with negative I-131 MIBG imaging. Clin Nucl Med. 1986;11:851–4.

    Article  CAS  PubMed  Google Scholar 

  19. Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11:1466–77.

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt M, Simon T, Hero B, et al. The prognostic impact of functional imaging with (123)ImIBGin patients with stage 4 neuroblastoma. 1 year of age on a high-risk treatment protocol: results of the German neuroblastoma trial NB97. Eur J Cancer. 2008;44:1552–8.

    Article  PubMed  Google Scholar 

  21. Boubaker A, Bischof Delaloye A. MIBG scintigraphy for the diagnosis and follow-up of children with neuroblastoma. Q J Nucl Med Mol Imaging. 2008;52:388–402.

    CAS  PubMed  Google Scholar 

  22. Kushner BH, Yeh SD, Kramer K, et al. Impact of metaiodobenzylguanidine scintigraphy on assessing response of high-risk neuroblastoma to doseintensive induction chemotherapy. J Clin Oncol. 2003;21:1082–6.

    Article  PubMed  Google Scholar 

  23. Matthay KK, Edeline V, Lumbroso J, et al. Correlation of early metastatic response by 123I-metaiodobenzylguanidine scintigraphy with overall response and event-free survival in stage IV neuroblastoma. J Clin Oncol. 2003;21:2486–91.

    Article  PubMed  Google Scholar 

  24. Matthay KK, Maris JM, Schleiermacher G, Nakagawara A, Mackall CL, Diller L, Weiss WA. Neuroblastoma. Nat Rev Dis Primers. 2016;2:16078.

    Article  PubMed  Google Scholar 

  25. de Kraker J, Hoefnagel KA, Verschuur AC, van Eck B, van Santen HM, Caron HN, et al. Iodine-131-metaiodobenzylguanidine as initial induction therapy in stage 4 neuroblastoma patients over 1 year of age. Eur J Cancer. 2008;44:551–6.

    Article  PubMed  CAS  Google Scholar 

  26. Mastrangelo S, Rufini V, Ruggiero A, Di Giannatale A, Riccard R. Treatment of advanced neuroblastoma in children over 1 year of age: the critical role of 131I-metaiodobenzylguanidine combined with chemotherapy in a rapid induction regimen. Pediatr Blood Cancer. 2011;56:1032–40.

    Article  PubMed  Google Scholar 

  27. Klingebiel T, Bader P, Bares R, Beck J, Hero B, Jurgens H, et al. Treatment of neuroblastoma stage 4 with 131I-meta-iodo-benzylguanidine, high-dose chemotherapy and immunotherapy. A pilot study. Eur J Cancer. 1998;34(9):1398–402.

    Article  CAS  PubMed  Google Scholar 

  28. Giammarile F, Chiti A, Lassmann M, Brans B, Flux G, EANM. EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging. 2008;35:1039–47.

    Article  CAS  PubMed  Google Scholar 

  29. Wilson JS, Gains JE, Moroz V, Wheatley K, Gaze MN. A systematic review of131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur J Cancer. 2014;50:801–15.

    Article  CAS  PubMed  Google Scholar 

  30. DuBois SG, Messina J, Maris JM, Huberty J, Glidden DV, Veatch J, et al. Hematologic toxicity of high-dose iodine-131-metaiodobenzylguanidine therapy for advanced neuroblastoma. J Clin Oncol. 2004;22:2452–60.

    Article  CAS  PubMed  Google Scholar 

  31. Hutchinson RJ, Sisson JC, Shapiro B, Miser JS, Normole D, Shulkin BL, et al. 131-I-metaiodobenzylguanidine treatment in patients with refractory advanced neuroblastoma. Am J Clin Oncol. 1992;15:226–32.

    Article  CAS  PubMed  Google Scholar 

  32. Matthay KK, Yanik G, Messina J, Quach A, Huberty J, Cheng SC, et al. Phase II study on the effect of disease sites, age, and prior therapy on response to iodine-131-metaiodobenzylguanidine therapy in refractory neuroblastoma. J Clin Oncol. 2007;25:1054–60.

    Article  CAS  PubMed  Google Scholar 

  33. Klingebiel T, Feine U, Treuner J, Reuland P, Handgretinger R, Niethammer D, et al. Treatment of neuroblastoma with [131I]metaiodobenzylguanidine: long-term results in 25 patients. J Nucl Biol Med. 1991;35:216–9.

    CAS  PubMed  Google Scholar 

  34. Matthay KK, Quach A, Huberty J, Franc BL, Hawkins RA, Jackson H, et al. Iodine-131-metaiodobenzylguanidine double infusion with autologous stem-cell rescue for neuroblastoma: a new approaches to neuroblastoma therapy phase I study. J Clin Oncol. 2009;27:1020–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnson K, McGlynn B, Saggio J, Baniewicz D, Zhuang H, Maris JM, et al. Safety and efficacy of tandem 131I-metaiodobenzylguanidine infusions in relapsed/refractory neuroblastoma. Pediatr Blood Cancer. 2011;57:1124–9.

    Article  PubMed  Google Scholar 

  36. Matthay KK, Tan JC, Villablanca JG, Yanik GA, Veatch J, Franc B, et al. Phase I dose escalation of iodine-131-metaiodobenzylguanidine with myeloablative chemotherapy and autologous stem-cell transplantation in refractory neuroblastoma: a new approaches to Neuroblastoma Therapy Consortium Study. J Clin Oncol. 2006;24:500–6.

    Article  CAS  PubMed  Google Scholar 

  37. Miano M, Garaventa A, Pizzitola MR, Piccolo MS, Dallorso S, Villavecchia GP, et al. Megatherapy combining 131I metaiodobenzylguanidine and high-dose chemotherapy with haematopoietic progenitor cell rescue for neuroblastoma. Bone Marrow Transplant. 2001;27:571–4.

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt M, Simon T, Hero B, Eschner W, Dietlein M, Sudbrock F, et al. Is there a benefit of 131I-MIBG therapy in the treatment of children with stage 4 neuroblastoma? A retrospective evaluation of The German Neuroblastoma Trial NB97 and implications for The German Neuroblastoma Trial NB2004. Nucl Med. 2006;45:145–51.

    CAS  Google Scholar 

  39. Ehninger G, Klingebiel T, Kumbier I, Schuler U, Feine U, Treuner J, Waller HD. Stability and pharmacokinetics of m-[131I]iodobenzylguanidine in patients. Cancer Res. 1987;47:6147–9.

    CAS  PubMed  Google Scholar 

  40. Parisi MT, Eslamy H, Park JR, Shulkin BL, Yanik GA. 131I-metaiodobenzylguanidine theranostics in neuroblastoma:historical perspectives; practical applications. Semin Nucl Med. 2016;46:184–202.

    Article  PubMed  Google Scholar 

  41. Matthay KK, DeSantes K, Hasegawa B, et al. Phase I dose escalation of I-131-metaiodobenzylguanidine with autologous bone marrow support in refractory neuroblastoma. J Clin Oncol. 1998;16:229–36.

    Article  CAS  PubMed  Google Scholar 

  42. Matthay KK, DeSantes K, Hasegawa B, Huberty J, Hattner RS, Ablin A, et al. Phase I dose escalation of 131I-metaiodobenzylguanidine with autologous bone marrow support in refractory neuroblastoma. J Clin Oncol. 1998;16:229–36.

    Article  CAS  PubMed  Google Scholar 

  43. Bleeker G, Schoot RA, Caron HN, de Kraker J, Hoefnagel CA, van Eck BL, Tytgat GA. Toxicity of upfront 131I-metaiodobenzylguanidine (131I-MIBG) therapy in newly diagnosed neuroblastoma patients: a retrospective analysis. Eur J Nucl Med Mol Imaging. 2013;40(11):1711–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Van Santen HM, de Kraker J, van Eck BLF, de Vijlder JJM, Vulsma T. Improved radiation protection of the thyroid gland with thyroxine, methimazole, and potassiumiodide during diagnostic and therapeutic use of radiolabeled metaiodobenzylguanidine in children with neuroblastoma. Cancer. 2003;98:389–96.

    Article  PubMed  CAS  Google Scholar 

  45. Clement SC, van Rijn RR, van Eck-Smit BL, van Trotsenburg AS, Caron HN, Tytgat GA, van Santen HM. Long-term efficacy of current thyroid prophylaxis and future perspectives on thyroid protection during 131I-metaiodobenzylguanidine treatment in children with neuroblastoma. Eur J Nucl Med Mol Imaging. 2015;42:706–15.

    Article  CAS  PubMed  Google Scholar 

  46. Kayano D, Kinuya S. Iodine-131 metaiodobenzylguanidine therapy for neuroblastoma: reports so far and future perspective. ScientificWorldJournal. 2015;2015:189135. https://doi.org/10.1155/2015/189135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Garaventa A, Gambini C, Villavecchia G, et al. Secondmalignancies in children with neuroblastoma after combined treatment with 131I-metaiodobenzylguanidine. Cancer. 2003;97(5):1332–8.

    Article  CAS  PubMed  Google Scholar 

  48. Fishbein L. Pheochromocytoma and paraganglioma: genetics, diagnosis, and treatment. Hematol Oncol Clin North Am. 2016;30:135–50. https://doi.org/10.1016/j.hoc.2015.09.006.

    Article  PubMed  Google Scholar 

  49. Gunawardane KPT, Grossman A. Pheochromocytoma and paraganglioma. Adv Exp Med Biol. 2017;956:239–59. https://doi.org/10.1007/5584, Springer International Publishing Switzerland.

    Article  PubMed  Google Scholar 

  50. Adjallé R, Plouin PF, Pacak K, Lehnert H. Treatment of malignant pheochromocytoma. Horm Metab Res. 2009;4:687–96. https://doi.org/10.1055/s-0029-1231025.

    Article  CAS  Google Scholar 

  51. Baudin E, Habra MA, Deschamps F, Cote G, Dumont F, Cabanillas M, Arfi-Roufe J, Berdelou A, Moon B, Al Ghuzlan A, Patel S, Leboulleux S, Jimenez C. Therapy of endocrine disease: treatment of malignant pheochromocytoma and paraganglioma. Eur J Endocrinol. 2014;171:R111–22. https://doi.org/10.1530/EJE-14-0113.

    Article  CAS  PubMed  Google Scholar 

  52. Jimenez P, Tatsui C, Jessop A, Thosani S, Jimenez C. Treatment for malignant pheochromocytomas and paragangliomas: 5 years of progress. Curr Oncol Rep. 2017;19:83. https://doi.org/10.1007/s11912-017-0643-0.

    Article  CAS  PubMed  Google Scholar 

  53. Parenti G, Zampetti B, Rapizzi E, Ercolino T, Giachè V, Mannelli M. Updated and new perspectives on diagnosis, prognosis, and therapy of malignant pheochromocytoma/paraganglioma. J Oncol. 2012;2012:872713. https://doi.org/10.1155/2012/872713.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Giammarile F, Chiti A, Lassmann M, et al. EANM procedure guidelins for 131I-met-iodobenzylguanidine (131I-mIBG) therapy. Eur J Nucl Med Mol Imaging. 2008;35:1039–47.

    Article  CAS  PubMed  Google Scholar 

  55. Carrasquillo JA, Pandit-Taskar N, Chen CC. Radionuclide therapy of adrenal tumors. J Surg Oncol. 2012;106:632–42.

    Article  PubMed  Google Scholar 

  56. Pasieka JL, McEwan AJB, Rorstad O. The palliative role ofI-131-MIBG and In-111-octreotide therapy in patients withmetastatic progressive neuroendocrine neoplasms. Surgery. 2004;136:1218–26.

    Article  PubMed  Google Scholar 

  57. Nguyen C, Faraggi M, Giraudet AL, et al. Long-term efficacyof radionuclide therapy in patients with disseminated neuroendocrinetumors uncontrolled by conventional therapy. J Nucl Med. 2004;45:1660–8.

    CAS  PubMed  Google Scholar 

  58. Zaknun JJ, Bodei L, Mueller-Brand J, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saveanu A, Muresan M, De Micco C, et al. Expression of somatostatin receptors, dopamine D-2 receptors, noradrenaline transporters, and vesicular monoamine transporters in 52 pheochromocytomas and paragangliomas. Endocr Relat Cancer. 2011;18:287–300.

    Article  PubMed  Google Scholar 

  60. Sisson JC, Shapiro B, Beierwaltes WH, et al. Radio pharmaceutical treatment of malignant pheochromocytoma. J Nucl Med. 1984;25:197–206.

    CAS  PubMed  Google Scholar 

  61. Huynh TT, Pacak K, Brouwers FM, et al. Different expression of catecholamine transporters in phaeochromocytomas from patients with Von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2. Eur J Endocrinol. 2005;153:551–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fottner C, Helisch A, Anlauf M, et al. 6-18F-fluoro-idihydroxyphenylalanine positron emission tomography is superior to 123I-metaiodobenzyl-guanidine scintigraphy in the detection of extra-adrenal and hereditary pheochromocytomas and paragangliomas: with vesicular monoamine transporter expression. J Clin Endocrinol Metab. 2010;95:2800–10.

    Article  CAS  PubMed  Google Scholar 

  63. Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: learning fromgenetic heterogeneity. Nat Rev Cancer. 2014;14:108–19.

    Article  CAS  PubMed  Google Scholar 

  64. Dubois LA, Gray DK. Dopamine-secreting pheochromocytomas: in search of a syndrome. World J Surg. 2005;29:909–13.

    Article  PubMed  Google Scholar 

  65. Kaji P, Carrasquillo JA, Linehan WM, et al. The role of 6-[18F]fluorodopaminepositron emission tomography in the localization of adrenal pheochromocytomaassociated with von Hippel-Lindau syndrome. Eur J Endocrinol. 2007;156:483–7.

    Article  CAS  PubMed  Google Scholar 

  66. Parenti G, Zampetti B, Rapizzi E, et al. Updated and new perspectices on diagnosis, prognosis, and therapy of malignant pheochromocytoma/paraganglioma. J Oncol. 2012;2012:872713.

    Article  PubMed  PubMed Central  Google Scholar 

  67. van Berkel A, Rao JU, Lenders JWM, et al. Semiquantitative I-123- metaiodobenzylguanidine scintigraphy to distinguish pheochromocy- toma and paraganglioma from physiologic adrenal uptake and its correlation with genotype-dependent expression of catecholamine trans- porters. J Nucl Med. 2015;56:839–46.

    Article  PubMed  Google Scholar 

  68. Ilias I, Pacak K. Current approaches and recommended algorithm for the diagnostic localization of pheochromocytoma. J Clin Endocrinol Metab. 2004;89:479–91.

    Article  CAS  PubMed  Google Scholar 

  69. Shulkin BL, Ilias I, Sisson JC, Pacak K. Current trends in functional imaging of pheochromocytomas and paragangliomas. Ann N Y Acad Sci. 2006;1073:374–82.

    Article  PubMed  Google Scholar 

  70. Gonias S, Goldsby R, Matthay KK, et al. Phase II study of high-dose I-131 metaiodobenzylguanidine therapy for patients with metastatic pheochromocytoma and paraganglioma. J Clin Oncol. 2009;27:4162–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shapiro B, Sisson JC, Lloyd R, et al. Malignant pheochromocytoma: clinical, biochemical and scintigraphic characterization. Clin Endocrinol. 1984;20:189–203.

    Article  CAS  Google Scholar 

  72. Sternthal E, Lipworth L, Stanley B, et al. Suppression of thyroid radioiodine uptake by various doses of stable iodide. N Engl J Med. 1980;303:1083–1088 55.

    Article  CAS  PubMed  Google Scholar 

  73. Zanzonico PB, Becker DV. Effects of time of administration and dietary iodine levels on potassium iodide (KI) blockade of thyroid irradiation by I-131 from radioactive fallout. Health Phys. 2000;78:660–667 56.

    Article  CAS  PubMed  Google Scholar 

  74. Carrasquillo JA, Pandiut-Taskar N, Chen CC. I-131 metaiodobenzylguanidine therapy of pheochromocytoma and paraganglioma. Semin Nucl Med. 2016;46:203–14.

    Article  PubMed  Google Scholar 

  75. Lopci E, Chiti A, Castellani MR, et al. Matched pairs dosimetry: 124I/131I metaiodobenzylguanidine and 124I/131/ and 86Y/90/Y antibodies. Eur J Nucl Med Mol Imaging. 2011;38(Suppl 1):S28–40.

    Article  PubMed  CAS  Google Scholar 

  76. Coleman RE, Stubbs JB, Barrett JA, et al. Radiation dosimetry, pharmacokinetics, and safety of ultratrace (TM) iobenguane I-131 in patients with malignant pheochromocytoma/paraganglioma or metastatic carcinoid. Cancer Biother Radiopharm. 2009;24:469–75.

    Article  CAS  PubMed  Google Scholar 

  77. Mairs RJ, Gaze MN, Watson DG, et al. Carrier-freeI-131 metaiodobenzylguanidine—comparison of production from meta-diazobenzylguanidine and from meta-trimethylsilylbenzylguanidine. Nucl Med Commun. 1994;15:268–74.

    Article  CAS  PubMed  Google Scholar 

  78. Vaidyanathan G, Affleck DJ, Zalutsky MR. No-carrier-added synthesis of a 4-methyl-substituted meta-iodobenzylguanidine analogue. Appl Radiat Isot. 2005;62:435–440 40.

    Article  CAS  PubMed  Google Scholar 

  79. Pandit-Taskar N, Modak S. Norepinephrine transporter as a target for imagingand therapy. J Nucl Med. 2017;58(Suppl 2):39S–53S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wakabayashi H, Taki J, Inaki A, et al. Prognostic values of initial responses to low-dose I-131-MIBG therapy in patients with malignant pheochromocytoma and paraganglioma. Ann Nucl Med. 2013;27:839–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fitzgerald PA, Goldsby RE, Huberty JP, et al. Malignant pheochromocytomas and paragangliomas. A phse II study of therapy with high-dose 131-metaiodobenzylguanidine (131I-MIBG). Ann N Y Acad Sci. 2006;1073:465–90.

    Article  CAS  PubMed  Google Scholar 

  82. Safford SD, Coleman E, Gockerman JP, et al. Iodine-131 metaiodoben- zylguanidine is an effective treatment formalignant pheochromocytoma and paraganglioma. Surgery. 2003;134:956–62.

    Article  PubMed  Google Scholar 

  83. Shilkrut M, Bar-Deroma R, Bar-Sela G, et al. Low-dose iodine-131 metaiodobenzylguanidine therapy for patients with malignant pheochromocytoma and paraganglioma single center experience. Am J Clin Oncol. 2010;33:79–82.

    Article  CAS  PubMed  Google Scholar 

  84. Pathirana AA, Vinjamuri S, Byrne C, Ghaneh P, Vora J, Poston GJ. I-131-MIBG radionuclide therapy is safe and cost-effective in the control of symptoms of the carcinoid syndrome. Eur J Surg Oncol. 2001;27:404–8.

    Article  CAS  PubMed  Google Scholar 

  85. Mukherjee JJ, Kaltsas GA, Islam N, et al. Treatment of metastatic carcinoid tumours, phaeochromocytoma, paraganglioma andmedullary carcinoma of the thyroid with I-131-meta-iodobenzylguanidine (I-131- MIBG). Clin Endocrinol. 2001;55:47–60.

    Article  CAS  Google Scholar 

  86. Noto RB, Pryma DA, Jensen J, et al. Phase 1 study of high-specific-activity I-131 MIBG for metastatic and/or recurrent pheochromocytoma or paraganglioma. J Clin Endocrinol Metab. 2018 Jan 1;103:213–20.

    Article  PubMed  Google Scholar 

  87. Castellani MR, Seghezzi S, Chiesa C, et al. I-131-MIBG treatment of pheochromocytoma: low versus intermediate activity regimens of therapy. Q J Nucl Med Mol Imaging. 2010;54:100–13.

    CAS  PubMed  Google Scholar 

  88. Gedik GK, Hoefnagel CA, Bais E, et al. 131I-MIBG therapyinmetastatic phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2008;35:725–33.

    Article  CAS  PubMed  Google Scholar 

  89. Lumbroso J, Schlumberger M, Tenenbaum F, et al. 131I Metaiodobenzylguanidine therapy in 20 patients with malignant pheochromocytoma. J Nucl Biol Med. 1991;35:288–91.

    CAS  PubMed  Google Scholar 

  90. Schlumberger M, Gicquel C, Lumbroso J, et al. Malignant pheochromocytoma—clinical, biological, histologic and therapeutic data in a series of 20 patients with distant metastases. J Endocrinol Invest. 1992;15:631–42.

    Article  CAS  PubMed  Google Scholar 

  91. Bomanji J, Britton KE, Ur E, et al. Treatment of malignant pheochro- mocytoma, paraganglioma and carcinoid-tumors with I-131 metaiodo- benzylguanidine. Nucl Med Commun. 1993;14:856–61.

    Article  CAS  PubMed  Google Scholar 

  92. Matthay KK, Panina C, Huberty J, Price D, Glidden DV, Tang HR, Hawkins RA, Veatch J, Hasegawa B. Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with (131)I-MIBG. J Nucl Med. 2001;42:1713–21.

    CAS  PubMed  Google Scholar 

  93. Buckley SE, Chittenden SJ, Saran FH, Meller ST, Flux GD. Whole-body dosimetry for individualized treatment planning of 131I-MIBG radionuclide therapy for neuroblastoma. J Nucl Med. 2009;50:1518–24.

    Article  CAS  PubMed  Google Scholar 

  94. George SL, Falzone N, Chittenden S, Kirk SJ, Lancaster D, Vaidya SJ, Mandeville H, Saran F, Pearson AD, Du Y, Meller ST, Denis-Bacelar AM, Flux GD. Individualized 131I-mIBG therapy in the management of refractory and relapsed neuroblastoma. Nucl Med Commun. 2016;37:466–72.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Matthay KK, Weiss B, Villablanca JG, Maris JM, Yanik GA, Dubois SG, Stubbs J, Groshen S, Tsao-Wei D, Hawkins R, Jackson H, Goodarzian F, Daldrup-Link H, Panigrahy A, Towbin A, Shimada H, Barrett J, Lafrance N, Babich J. Dose escalation study of no-carrier-added 131I-metaiodobenzylguanidine for relapsed or refractory neuroblastoma: new approaches to neuroblastoma therapy consortium trial. J Nucl Med. 2012;53:1155–63.

    Article  CAS  PubMed  Google Scholar 

  96. Gaze MN, Chang YC, Flux GD, Mairs RJ, Saran FH, Meller ST. Feasibility of dosimetry-based high-dose 131I-meta-iodobenzylguanidine with topotecan as a radiosensitizer in children with metastatic neuroblastoma. Cancer Biother Radiopharm. 2005;20:195–9.

    Article  CAS  PubMed  Google Scholar 

  97. Bolster A, Hilditch T, Wheldon T, Gaze M, Barrett A. Dosimetric considerations in 131I-MIBG therapy for neuroblastoma in children. Br J Radiol. 1995;68:481–90.

    Article  CAS  PubMed  Google Scholar 

  98. Fielding SL, Flower MA, Ackery D, Kemshead JT, Lashford LS, Lewis I. Dosimetry of iodine 131 metaiodobenzylguanidine for treatment of resistant neuroblastoma: results of a UK study. Eur J Nucl Med. 1991;18:308–16.

    Article  CAS  PubMed  Google Scholar 

  99. Sudbrock F, Schmidt M, Simon T, Eschner W, Berthold F, Schicha H. Dosimetry for 131I-MIBG therapies in metastatic neuroblastoma, phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2010;37:1279–90.

    Article  PubMed  Google Scholar 

  100. Monsieurs M, Brans B, Bacher K, Dierckx R, Thierens H. Patient dosimetry for 131I-MIBG therapy for neuroendocrine tumours based on 123I-MIBG scans. Eur J Nucl Med Mol Imaging. 2002;29:1581–7.

    Article  CAS  PubMed  Google Scholar 

  101. Tristam M, Alaamer A, Fleming J, Lewington V, Zivanovic M. Iodine-131-metaiodobenzylguanidine dosimetry in cancer therapy. J Nucl Med. 1996;37:1058–63.

    CAS  PubMed  Google Scholar 

  102. Ertl S, Deckart H, Blottner A, Tautz M. Radiopharmacokinetics and radiation absorbed dose calculations from 131I-meta-iodobenzylguanidine (131I-MIBG). Nucl Med Commun. 1987;8:643–53.

    Article  CAS  PubMed  Google Scholar 

  103. Buckley SE, Saran FH, Gaze MN, Chittenden S, Partridge M, Lancaster D, Pearson A, Flux GD. Dosimetry for fractionated (131)I-mIBG therapies in patients with primary resistant high-risk neuroblastoma: preliminary results. Cancer Biother Radiopharm. 2007;22:105–12.

    Article  CAS  PubMed  Google Scholar 

  104. Bodey RK, Flux GD, Evans PM. Combining dosimetry for targeted radionuclide and external beam therapies using the biologically effective dose. Cancer Biother Radiopharm. 2003;18:89–97.

    Article  CAS  PubMed  Google Scholar 

  105. Koral KF, Wang XH, Sisson JC, Botti J, Meyer L, Mallette S, Glazer GM, Adler RS. Calculating radiation absorbed dose for pheochromocytoma tumors in 131-I MIBG therapy. Int J Radiat Oncol Biol Phys. 1989;17:211–8.

    Article  CAS  PubMed  Google Scholar 

  106. Koral KF, Huberty JP, Frame B, Matthay KK, Maris JM, Regan D, Normolle D, Yanik GA. Hepatic absorbed radiation dosimetry during I-131 metaiodobenzylguanidine (MIBG) therapy for refractory neuroblastoma. Eur J Nucl Med Mol Imaging. 2008;35:2105–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnoldo Piccardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piccardo, A., Foppiani, L., Righi, S., Garaventa, A., Sorrentino, S., Lopci, E. (2019). 131I-MIBG Therapy of Malignant Neuroblastoma and Pheochromocytoma. In: Giovanella, L. (eds) Nuclear Medicine Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-17494-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17494-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17493-4

  • Online ISBN: 978-3-030-17494-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics