Skip to main content

Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors

  • Chapter
  • First Online:
Nuclear Medicine Therapy
  • 904 Accesses

Abstract

Somatostatin receptor targeting for imaging and treatment of neuroendocrine tumors with radiolabeled peptides has become an important topic over the last two decades. The somatostatin receptor, which is overexpressed in virtually all neuroendocrine tumors, belongs to the large family of G-protein coupled receptors (GPCRs).

Imaging of these tumors with radiopeptides is used for diagnosis, staging, restaging, and follow-up. Beside this, imaging is an important cornerstone to give the indication for treatment with radiopeptides. The registered radiopeptide 111In-pentetreotide is well established. However, a number of very efficient SPECT tracers labeled with 99mTc and PET agents based on the generator-produced 68Ga were developed and are nowadays employed regularly in the clinic.

For therapy somatostatin analogues labeled with the β-emitters 90Y and 177Lu are widely used. The most widely used compounds are 177Lu-DOTATATE ([177Lu-DOTA0,Tyr3,Thr8]-octreotide or [177Lu-DOTA0,Tyr3]-octreotate) and 90Y-DOTATOC ([90Y-DOTA0,Tyr3]-octreotide). As the same chelators and therefore the same conjugates can be used in diagnosis and therapy, these compounds constitute ideal theranostic pairs.

177Lu-DOTATATE was the first radiopeptide for therapy that received FDA-approval in January 2018. The approval was based on the recently published NETTER-1 study who compared 177Lu-DOTATATE therapy with high-dose long-acting octreotide in a randomized setting. The study showed that the median progression-free survival (PFS) was 8.5 months in the high-dose long-acting octreotide arm while it was not reached in the 177Lu-DOTATATE arm while side effects were tolerable. The most common grade 3–4 adverse reactions among patients receiving 177Lu-DOTATATE included lymphopenia, increased liver enzymes, nausea, hyperglycemia, and hypokalemia. With a median follow-up of 24 months, myelodysplastic syndrome was reported in 2.7% of patients receiving 177Lu-DOTATATE. Kidney toxicity—a major concern in radiopeptide therapy—was not observed. All patients received amino acid solution as a renal protectant.

Nowadays radiopeptide with radiolabeled somatostatin analogues is an established treatment for metastatic well-differentiated (G1 and G2) neuroendocrine tumors. The treatment is implemented in the widely accepted ENETS consensus guidelines of 2016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9(1):61–72.

    Article  CAS  PubMed  Google Scholar 

  2. Wiedenmann B, John M, Ahnert-Hilger G, et al. Molecular and cell biological aspects of neuroendocrine tumors of the gastroenteropancreatic system. J Mol Med (Berl). 1998;76(9):637–47.

    Article  CAS  Google Scholar 

  3. Zikusoka MN, Kidd M, Eick G, et al. The molecular genetics of gastroenteropancreatic neuroendocrine tumors. Cancer. 2005;104(11):2292–309.

    Article  CAS  PubMed  Google Scholar 

  4. Naswa N, Sharma P, Kumar A, et al. Gallium-68-DOTA-NOC PET/CT of patients with gastroenteropancreatic neuroendocrine tumors: a prospective single-center study. AJR Am J Roentgenol. 2011;197(5):1221–8.

    Article  PubMed  Google Scholar 

  5. Reubi JC. Somatostatin receptors in the gastrointestinal tract in health and disease. Yale J Biol Med. 1992;65(5):493–503; discussion 31-6.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Reubi JC. Peptide receptor expression in GEP-NET. Virchows Arch. 2007;451(Suppl 1):S47–50.

    Article  CAS  PubMed  Google Scholar 

  7. Williams ED, Sandler M. The classification of carcinoid tumours. Lancet. 1963;1(7275):238–9.

    Article  CAS  PubMed  Google Scholar 

  8. Plockinger U, Gustafsson B, Ivan D, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: echocardiography. Neuroendocrinology. 2009;90(2):190–3.

    Article  PubMed  CAS  Google Scholar 

  9. Rindi G, Kloppel G, Couvelard A, et al. TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2007;451(4):757–62.

    Article  CAS  PubMed  Google Scholar 

  10. Rindi G, Kloppel G, Alhman H, et al. TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch. 2006;449(4):395–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Perren A, Couvelard A, Scoazec JY, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: pathology: diagnosis and prognostic stratification. Neuroendocrinology. 2017;105(3):196–200.

    Article  CAS  PubMed  Google Scholar 

  12. Quaedvlieg PF, Visser O, Lamers CB, et al. Epidemiology and survival in patients with carcinoid disease in The Netherlands. An epidemiological study with 2391 patients. Ann Oncol. 2001;12(9):1295–300.

    Article  CAS  PubMed  Google Scholar 

  13. Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer. 2003;97(4):934–59.

    Article  PubMed  Google Scholar 

  14. Janson ET, Holmberg L, Stridsberg M, et al. Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center. Ann Oncol. 1997;8(7):685–90.

    Article  CAS  PubMed  Google Scholar 

  15. Reubi JC, Waser B, Schaer JC, et al. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med. 2001;28(7):836–46.

    Article  CAS  PubMed  Google Scholar 

  16. Behr TM, Gotthardt M, Barth A, et al. Imaging tumors with peptide-based radioligands. Q J Nucl Med. 2001;45(2):189–200.

    CAS  PubMed  Google Scholar 

  17. Ambrosini V, Tomassetti P, Franchi R, et al. Imaging of NETs with PET radiopharmaceuticals. Q J Nucl Med Mol Imaging. 2010;54(1):16–23.

    CAS  PubMed  Google Scholar 

  18. Bozkurt MF, Virgolini I, Balogova S, et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with (68)Ga-DOTA-conjugated somatostatin receptor targeting peptides and (18)F-DOPA. Eur J Nucl Med Mol Imaging. 2017;44(9):1588–601.

    Article  CAS  PubMed  Google Scholar 

  19. Delle Fave G, O’Toole D, Sundin A, et al. ENETS consensus guidelines update for gastroduodenal neuroendocrine neoplasms. Neuroendocrinology. 2016;103(2):119–24.

    Article  CAS  PubMed  Google Scholar 

  20. Niederle B, Pape UF, Costa F, et al. ENETS consensus guidelines update for neuroendocrine neoplasms of the jejunum and ileum. Neuroendocrinology. 2016;103(2):125–38.

    Article  CAS  PubMed  Google Scholar 

  21. Falconi M, Eriksson B, Kaltsas G, et al. ENETS consensus guidelines update for the management of patients with functional pancreatic neuroendocrine tumors and non-functional pancreatic neuroendocrine tumors. Neuroendocrinology. 2016;103(2):153–71.

    Article  CAS  PubMed  Google Scholar 

  22. Garcia-Carbonero R, Sorbye H, Baudin E, et al. ENETS consensus guidelines for high-grade gastroenteropancreatic neuroendocrine tumors and neuroendocrine carcinomas. Neuroendocrinology. 2016;103(2):186–94.

    Article  CAS  PubMed  Google Scholar 

  23. Ramage JK, De Herder WW, Delle Fave G, et al. ENETS consensus guidelines update for colorectal neuroendocrine neoplasms. Neuroendocrinology. 2016;103(2):139–43.

    Article  CAS  PubMed  Google Scholar 

  24. Pape UF, Niederle B, Costa F, et al. ENETS consensus guidelines for neuroendocrine neoplasms of the appendix (excluding goblet cell carcinomas). Neuroendocrinology. 2016;103(2):144–52.

    Article  CAS  PubMed  Google Scholar 

  25. Norton JA, Fraker DL, Alexander HR, et al. Surgery increases survival in patients with gastrinoma. Ann Surg. 2006;244(3):410–9.

    PubMed  PubMed Central  Google Scholar 

  26. Akerstrom G. Management of carcinoid tumors of the stomach, duodenum, and pancreas. World J Surg. 1996;20(2):173–82.

    Article  CAS  PubMed  Google Scholar 

  27. Rinke A, Muller HH, Schade-Brittinger C, et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group. J Clin Oncol. 2009;27(28):4656–63.

    Article  CAS  PubMed  Google Scholar 

  28. Eriksson B, Janson ET, Bax ND, et al. The use of new somatostatin analogues, lanreotide and octastatin, in neuroendocrine gastro-intestinal tumours. Digestion. 1996;57(Suppl 1):77–80.

    Article  CAS  PubMed  Google Scholar 

  29. Oberg K, Ferone D, Kaltsas G, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: biotherapy. Neuroendocrinology. 2009;90(2):209–13.

    Article  PubMed  CAS  Google Scholar 

  30. Faiss S, Pape UF, Bohmig M, et al. Prospective, randomized, multicenter trial on the antiproliferative effect of lanreotide, interferon alfa, and their combination for therapy of metastatic neuroendocrine gastroenteropancreatic tumors-the International Lanreotide and Interferon Alfa study group. J Clin Oncol. 2003;21(14):2689–96.

    Article  CAS  PubMed  Google Scholar 

  31. Eriksson B, Annibale B, Bajetta E, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: chemotherapy in patients with neuroendocrine tumors. Neuroendocrinology. 2009;90(2):214–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kouvaraki MA, Ajani JA, Hoff P, et al. Fluorouracil, doxorubicin, and streptozocin in the treatment of patients with locally advanced and metastatic pancreatic endocrine carcinomas. J Clin Oncol. 2004;22(23):4762–71.

    Article  CAS  PubMed  Google Scholar 

  33. Pavel ME, Hainsworth JD, Baudin E, et al. Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumours associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet. 2011;378(9808):2005–12.

    Article  CAS  PubMed  Google Scholar 

  34. Yao JC, Phan A, Hoff PM, et al. Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J Clin Oncol. 2008;26(8):1316–23.

    Article  CAS  PubMed  Google Scholar 

  35. Raymond E, Dahan L, Raoul JL, et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):501–13.

    Article  CAS  PubMed  Google Scholar 

  36. Yao JC, Lombard-Bohas C, Baudin E, et al. Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. J Clin Oncol. 2010;28(1):69–76.

    Article  CAS  PubMed  Google Scholar 

  37. Yao JC, Shah MH, Ito T, et al. Everolimus for advanced pancreatic neuroendocrine tumors. N Engl J Med. 2011;364(6):514–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patrick DL, Ferketich SL, Frame PS, et al. National institutes of health state-of-the-science conference statement: symptom management in cancer: pain, depression, and fatigue, July 15–17, 2002. J Natl Cancer Inst. 2003;95(15):1110–7.

    Article  PubMed  Google Scholar 

  39. Pavel M, O’Toole D, Costa F, et al. ENETS consensus guidelines update for the management of distant metastatic disease of intestinal, pancreatic, bronchial neuroendocrine neoplasms (NEN) and NEN of unknown primary site. Neuroendocrinology. 2016;103(2):172–85.

    Article  CAS  PubMed  Google Scholar 

  40. Krenning EP, de Jong M, Kooij PP, et al. Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy. Ann Oncol. 1999;10(Suppl 2):S23–9.

    Article  PubMed  Google Scholar 

  41. Bodei L, Handkiewicz-Junak D, Grana C, et al. Receptor radionuclide therapy with 90Y-DOTATOC in patients with medullary thyroid carcinomas. Cancer Biother Radiopharm. 2004;19(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  42. Bodei L, Cremonesi M, Grana C, et al. Receptor radionuclide therapy with 90Y-[DOTA]0-Tyr3-octreotide (90Y-DOTATOC) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31(7):1038–46.

    Article  CAS  PubMed  Google Scholar 

  43. Valkema R, Pauwels S, Kvols LK, et al. Survival and response after peptide receptor radionuclide therapy with [90Y-DOTA0,Tyr3]octreotide in patients with advanced gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med. 2006;36(2):147–56.

    Article  PubMed  Google Scholar 

  44. Kwekkeboom DJ, Bakker WH, Kam BL, et al. Treatment of patients with gastro-entero-pancreatic (GEP) tumours with the novel radiolabelled somatostatin analogue [177Lu-DOTA(0),Tyr3]octreotate. Eur J Nucl Med Mol Imaging. 2003;30(3):417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Waser B, Tamma ML, Cescato R, et al. Highly efficient in vivo agonist-induced internalization of sst2 receptors in somatostatin target tissues. J Nucl Med. 2009;50(6):936–41.

    Article  CAS  PubMed  Google Scholar 

  46. Fani M, Nicolas GP, Wild D. Somatostatin receptor antagonists for imaging and therapy. J Nucl Med. 2017;58(Suppl 2):61S–6S.

    Article  CAS  PubMed  Google Scholar 

  47. Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging and therapy. J Nucl Med. 2000;41(10):1704–13.

    CAS  PubMed  Google Scholar 

  48. Mariani G, Bodei L, Adelstein SJ, et al. Emerging roles for radiometabolic therapy of tumors based on auger electron emission. J Nucl Med. 2000;41(9):1519–21.

    CAS  PubMed  Google Scholar 

  49. Janson ET, Westlin JE, Ohrvall U, et al. Nuclear localization of 111In after intravenous injection of [111In-DTPA-D-Phe1]-octreotide in patients with neuroendocrine tumors. J Nucl Med. 2000;41(9):1514–8.

    CAS  PubMed  Google Scholar 

  50. Rufini V, Calcagni ML, Baum RP. Imaging of neuroendocrine tumors. Semin Nucl Med. 2006;36(3):228–47.

    Article  PubMed  Google Scholar 

  51. Schottelius M, Wester HJ. Molecular imaging targeting peptide receptors. Methods. 2009;48(2):161–77.

    Article  CAS  PubMed  Google Scholar 

  52. Forrer F, Valkema R, Kwekkeboom DJ, et al. Neuroendocrine tumors. Peptide receptor radionuclide therapy. Best Pract Res Clin Endocrinol Metab. 2007;21(1):111–29.

    Article  CAS  PubMed  Google Scholar 

  53. Reubi JC, Schar JC, Waser B, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27(3):273–82.

    Article  CAS  PubMed  Google Scholar 

  54. Krenning EP, Kwekkeboom DJ, Bakker WH, et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med. 1993;20(8):716–31.

    Article  CAS  PubMed  Google Scholar 

  55. Fjalling M, Andersson P, Forssell-Aronsson E, et al. Systemic radionuclide therapy using indium-111-DTPA-D-Phe1-octreotide in midgut carcinoid syndrome. J Nucl Med. 1996;37(9):1519–21.

    CAS  PubMed  Google Scholar 

  56. Valkema R, De Jong M, Bakker WH, et al. Phase I study of peptide receptor radionuclide therapy with [In-DTPA]octreotide: the Rotterdam experience. Semin Nucl Med. 2002;32(2):110–22.

    Article  PubMed  Google Scholar 

  57. Krenning EP, Kooij PP, Bakker WH, et al. Radiotherapy with a radiolabeled somatostatin analogue, [111In-DTPA-D-Phe1]-octreotide. A case history. Ann N Y Acad Sci. 1994;733:496–506.

    Article  CAS  PubMed  Google Scholar 

  58. Anthony LB, Woltering EA, Espenan GD, et al. Indium-111-pentetreotide prolongs survival in gastroenteropancreatic malignancies. Semin Nucl Med. 2002;32(2):123–32.

    Article  PubMed  Google Scholar 

  59. Delpassand ES, Sims-Mourtada J, Saso H, et al. Safety and efficacy of radionuclide therapy with high-activity In-111 pentetreotide in patients with progressive neuroendocrine tumors. Cancer Biother Radiopharm. 2008;23(3):292–300.

    Article  CAS  PubMed  Google Scholar 

  60. Oberg K, Eriksson B. Endocrine tumours of the pancreas. Best Pract Res Clin Gastroenterol. 2005;19(5):753–81.

    Article  PubMed  CAS  Google Scholar 

  61. Mardirossian G, Wu C, Hnatowich DJ. The stability in liver homogenates of indium-111 and yttrium-90 attached to antibody via two popular chelators. Nucl Med Biol. 1993;20(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  62. Liu S, Edwards DS. Stabilization of (90)y-labeled DOTA-biomolecule conjugates using gentisic acid and ascorbic acid. Bioconjug Chem. 2001;12(4):554–8.

    Article  CAS  PubMed  Google Scholar 

  63. Otte A, Jermann E, Behe M, et al. DOTATOC: a powerful new tool for receptor-mediated radionuclide therapy. Eur J Nucl Med. 1997;24(7):792–5.

    CAS  PubMed  Google Scholar 

  64. Otte A, Mueller-Brand J, Dellas S, et al. Yttrium-90-labelled somatostatin-analogue for cancer treatment. Lancet. 1998;351(9100):417–8.

    Article  CAS  PubMed  Google Scholar 

  65. Otte A, Herrmann R, Heppeler A, et al. Yttrium-90 DOTATOC: first clinical results. Eur J Nucl Med. 1999;26(11):1439–47.

    Article  CAS  PubMed  Google Scholar 

  66. Waldherr C, Pless M, Maecke HR, et al. The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol. 2001;12(7):941–5.

    Article  CAS  PubMed  Google Scholar 

  67. Waldherr C, Pless M, Maecke HR, et al. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 GBq (90)Y-DOTATOC. J Nucl Med. 2002;43(5):610–6.

    CAS  PubMed  Google Scholar 

  68. Forrer F, Waldherr C, Maecke HR, et al. Targeted radionuclide therapy with 90Y-DOTATOC in patients with neuroendocrine tumors. Anticancer Res. 2006;26(1B):703–7.

    CAS  PubMed  Google Scholar 

  69. Bodei L, Cremonesi M, Zoboli S, et al. Receptor-mediated radionuclide therapy with 90Y-DOTATOC in association with amino acid infusion: a phase I study. Eur J Nucl Med Mol Imaging. 2003;30(2):207–16.

    Article  CAS  PubMed  Google Scholar 

  70. De Jong M, Valkema R, Jamar F, et al. Somatostatin receptor-targeted radionuclide therapy of tumors: preclinical and clinical findings. Semin Nucl Med. 2002;32(2):133–40.

    Article  PubMed  Google Scholar 

  71. Virgolini I, Britton K, Buscombe J, et al. In- and Y-DOTA-lanreotide: results and implications of the MAURITIUS trial. Semin Nucl Med. 2002;32(2):148–55.

    Article  PubMed  Google Scholar 

  72. Cwikla JB, Sankowski A, Seklecka N, et al. Efficacy of radionuclide treatment DOTATATE Y-90 in patients with progressive metastatic gastroenteropancreatic neuroendocrine carcinomas (GEP-NETs): a phase II study. Ann Oncol. 2010;21(4):787–94.

    Article  CAS  PubMed  Google Scholar 

  73. Kwekkeboom DJ, de Herder WW, Kam BL, et al. Treatment with the radiolabeled somatostatin analog [177 Lu-DOTA 0,Tyr3]octreotate: toxicity, efficacy, and survival. J Clin Oncol. 2008;26(13):2124–30.

    Article  CAS  PubMed  Google Scholar 

  74. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of (177)Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Strosberg J, Wolin E, Chasen B, et al. Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with (177)Lu-Dotatate in the phase III NETTER-1 trial. J Clin Oncol. 2018;36(25):2578–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. de Jong M, Breeman WA, Valkema R, et al. Combination radionuclide therapy using 177Lu- and 90Y-labeled somatostatin analogs. J Nucl Med. 2005;46(Suppl 1):13S–7S.

    PubMed  Google Scholar 

  77. Villard L, Romer A, Marincek N, et al. Cohort study of somatostatin-based radiopeptide therapy with [(90)Y-DOTA]-TOC versus [(90)Y-DOTA]-TOC plus [(177)Lu-DOTA]-TOC in neuroendocrine cancers. J Clin Oncol. 2012;30(10):1100–6.

    Article  CAS  PubMed  Google Scholar 

  78. Kunikowska J, Krolicki L, Hubalewska-Dydejczyk A, et al. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging. 2011;38(10):1788–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pool SE, Kam BL, Koning GA, et al. [(111)In-DTPA]octreotide tumor uptake in GEPNET liver metastases after intra-arterial administration: an overview of preclinical and clinical observations and implications for tumor radiation dose after peptide radionuclide therapy. Cancer Biother Radiopharm. 2014;29(4):179–87.

    Article  CAS  PubMed  Google Scholar 

  80. Hofman MS, Hicks RJ. Peptide receptor radionuclide therapy for neuroendocrine tumours: standardized and randomized, or personalized? Eur J Nucl Med Mol Imaging. 2014;41(2):211–3.

    Article  PubMed  Google Scholar 

  81. van Essen M, Krenning EP, Kam BL, et al. Report on short-term side effects of treatments with 177Lu-octreotate in combination with capecitabine in seven patients with gastroenteropancreatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2008;35(4):743–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Hubble D, Kong G, Michael M, et al. 177Lu-octreotate, alone or with radiosensitising chemotherapy, is safe in neuroendocrine tumour patients previously treated with high-activity 111In-octreotide. Eur J Nucl Med Mol Imaging. 2010;37(10):1869–75.

    Article  CAS  PubMed  Google Scholar 

  83. Claringbold PG, Brayshaw PA, Price RA, et al. Phase II study of radiopeptide 177Lu-octreotate and capecitabine therapy of progressive disseminated neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2011;38(2):302–11.

    Article  CAS  PubMed  Google Scholar 

  84. Kashyap R, Hofman MS, Michael M, et al. Favourable outcomes of (177)Lu-octreotate peptide receptor chemoradionuclide therapy in patients with FDG-avid neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2015;42(2):176–85.

    Article  CAS  PubMed  Google Scholar 

  85. Claringbold PG, Price RA, Turner JH. Phase I-II study of radiopeptide 177Lu-octreotate in combination with capecitabine and temozolomide in advanced low-grade neuroendocrine tumors. Cancer Biother Radiopharm. 2012;27(9):561–9.

    Article  CAS  PubMed  Google Scholar 

  86. Rashidi A, Sorscher SM. Temozolomide-associated myelodysplasia 6 years after treatment of a patient with pancreatic neuroendocrine tumor. Leuk Lymphoma. 2015;56(8):2468–9.

    Article  PubMed  Google Scholar 

  87. Forrer F, Uusijarvi H, Storch D, et al. Treatment with 177Lu-DOTATOC of patients with relapse of neuroendocrine tumors after treatment with 90Y-DOTATOC. J Nucl Med. 2005;46(8):1310–6.

    CAS  PubMed  Google Scholar 

  88. Frilling A, Weber F, Saner F, et al. Treatment with (90)Y- and (177)Lu-DOTATOC in patients with metastatic neuroendocrine tumors. Surgery. 2006;140(6):968–76; discussion 76–7.

    Article  PubMed  Google Scholar 

  89. Severi S, Sansovini M, Ianniello A, et al. Feasibility and utility of re-treatment with (177)Lu-DOTATATE in GEP-NENs relapsed after treatment with (90)Y-DOTATOC. Eur J Nucl Med Mol Imaging. 2015;42(13):1955–63.

    Article  CAS  PubMed  Google Scholar 

  90. Brans B, Bodei L, Giammarile F, et al. Clinical radionuclide therapy dosimetry: the quest for the “Holy Gray”. Eur J Nucl Med Mol Imaging. 2007;34(5):772–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46(6):1023–7.

    PubMed  Google Scholar 

  92. Pauwels S, Barone R, Walrand S, et al. Practical dosimetry of peptide receptor radionuclide therapy with (90)Y-labeled somatostatin analogs. J Nucl Med. 2005;46(Suppl 1):92S–8S.

    CAS  PubMed  Google Scholar 

  93. Jamar F, Barone R, Mathieu I, et al. (86Y-DOTA0)-D-Phe1-Tyr3-octreotide (SMT487)-a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. Eur J Nucl Med Mol Imaging. 2003;30(4):510–8.

    Article  CAS  PubMed  Google Scholar 

  94. Barone R, Borson-Chazot F, Valkema R, et al. Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med. 2005;46(Suppl 1):99S–106S.

    CAS  PubMed  Google Scholar 

  95. DeNardo GL, Juweid ME, White CA, et al. Role of radiation dosimetry in radioimmunotherapy planning and treatment dosing. Crit Rev Oncol Hematol. 2001;39(1–2):203–18.

    Article  CAS  PubMed  Google Scholar 

  96. Cremonesi M, Botta F, Di Dia A, et al. Dosimetry for treatment with radiolabelled somatostatin analogues. A review. Q J Nucl Med Mol Imaging. 2010;54(1):37–51.

    CAS  PubMed  Google Scholar 

  97. Forrer F, Uusijarvi H, Waldherr C, et al. A comparison of (111)In-DOTATOC and (111)In-DOTATATE: biodistribution and dosimetry in the same patients with metastatic neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2004;31(9):1257–62.

    Article  CAS  PubMed  Google Scholar 

  98. Fabbri C, Sarti G, Cremonesi M, et al. Quantitative analysis of 90Y Bremsstrahlung SPECT-CT images for application to 3D patient-specific dosimetry. Cancer Biother Radiopharm. 2009;24(1):145–54.

    Article  CAS  PubMed  Google Scholar 

  99. Lhommel R, Goffette P, Van den Eynde M, et al. Yttrium-90 TOF PET scan demonstrates high-resolution biodistribution after liver SIRT. Eur J Nucl Med Mol Imaging. 2009;36(10):1696.

    Article  PubMed  Google Scholar 

  100. Forrer F, Krenning EP, Kooij PP, et al. Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA(0),Tyr(3)]octreotate. Eur J Nucl Med Mol Imaging. 2009;36(7):1138–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Konijnenberg M, Melis M, Valkema R, et al. Radiation dose distribution in human kidneys by octreotides in peptide receptor radionuclide therapy. J Nucl Med. 2007;48(1):134–42.

    CAS  PubMed  Google Scholar 

  102. Forrer F, Rolleman E, Bijster M, et al. From outside to inside? Dose-dependent renal tubular damage after high-dose peptide receptor radionuclide therapy in rats measured with in vivo (99m)Tc-DMSA-SPECT and molecular imaging. Cancer Biother Radiopharm. 2007;22(1):40–9.

    Article  CAS  PubMed  Google Scholar 

  103. de Jong M, Barone R, Krenning E, et al. Megalin is essential for renal proximal tubule reabsorption of (111)In-DTPA-octreotide. J Nucl Med. 2005;46(10):1696–700.

    PubMed  Google Scholar 

  104. De Jong M, Valkema R, Van Gameren A, et al. Inhomogeneous localization of radioactivity in the human kidney after injection of [(111)In-DTPA]octreotide. J Nucl Med. 2004;45(7):1168–71.

    PubMed  Google Scholar 

  105. Konijnenberg MW, Bijster M, Krenning EP, et al. A stylized computational model of the rat for organ dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with (90)Y, (111)In, or (177)Lu. J Nucl Med. 2004;45(7):1260–9.

    CAS  PubMed  Google Scholar 

  106. Bodei L, Cremonesi M, Ferrari M, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging. 2008;35(10):1847–56.

    Article  CAS  PubMed  Google Scholar 

  107. Valkema R, Pauwels SA, Kvols LK, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with (90)Y-DOTA(0),Tyr(3)-octreotide and (177)Lu-DOTA(0), Tyr(3)-octreotate. J Nucl Med. 2005;46(Suppl 1):83S–91S.

    CAS  PubMed  Google Scholar 

  108. Hicks RJ, Kwekkeboom DJ, Krenning E, et al. ENETS consensus guidelines for the standards of care in neuroendocrine neoplasia: peptide receptor radionuclide therapy with radiolabeled somatostatin analogues. Neuroendocrinology. 2017;105(3):295–309.

    Article  CAS  PubMed  Google Scholar 

  109. Bodei L, Mueller-Brand J, Baum RP, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40(5):800–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Barone R, Pauwels S, De Camps J, et al. Metabolic effects of amino acid solutions infused for renal protection during therapy with radiolabelled somatostatin analogues. Nephrol Dial Transplant. 2004;19(9):2275–81.

    Article  CAS  PubMed  Google Scholar 

  111. Rolleman EJ, Valkema R, de Jong M, et al. Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging. 2003;30(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  112. Giovacchini G, Nicolas G, Freidank H, et al. Effect of amino acid infusion on potassium serum levels in neuroendocrine tumour patients treated with targeted radiopeptide therapy. Eur J Nucl Med Mol Imaging. 2011;38(9):1675–82.

    Article  CAS  PubMed  Google Scholar 

  113. Bernard BF, Krenning EP, Breeman WA, et al. D-lysine reduction of indium-111 octreotide and yttrium-90 octreotide renal uptake. J Nucl Med. 1997;38(12):1929–33.

    CAS  PubMed  Google Scholar 

  114. Rolleman EJ, Melis M, Valkema R, et al. Kidney protection during peptide receptor radionuclide therapy with somatostatin analogues. Eur J Nucl Med Mol Imaging. 2010;37(5):1018–31.

    Article  PubMed  Google Scholar 

  115. Rolleman EJ, Forrer F, Bernard B, et al. Amifostine protects rat kidneys during peptide receptor radionuclide therapy with [177Lu-DOTA0,Tyr3]octreotate. Eur J Nucl Med Mol Imaging. 2007;34(5):763–71.

    Article  CAS  PubMed  Google Scholar 

  116. Imhof A, Brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol. 2011;29(17):2416–23.

    Article  CAS  PubMed  Google Scholar 

  117. Sabet A, Ezziddin K, Pape UF, et al. Long-term hematotoxicity after peptide receptor radionuclide therapy with 177Lu-octreotate. J Nucl Med. 2013;54(11):1857–61.

    Article  CAS  PubMed  Google Scholar 

  118. Brieau B, Hentic O, Lebtahi R, et al. High risk of myelodysplastic syndrome and acute myeloid leukemia after 177Lu-octreotate PRRT in NET patients heavily pretreated with alkylating chemotherapy. Endocr Relat Cancer. 2016;23(5):L17–23.

    Article  CAS  PubMed  Google Scholar 

  119. Sierra ML, Agazzi A, Bodei L, et al. Lymphocytic toxicity in patients after peptide-receptor radionuclide therapy (PRRT) with 177Lu-DOTATATE and 90Y-DOTATOC. Cancer Biother Radiopharm. 2009;24(6):659–65.

    Article  CAS  PubMed  Google Scholar 

  120. Esser JP, Krenning EP, Teunissen JJ, et al. Comparison of [(177)Lu-DOTA(0),Tyr(3)]octreotate and [(177)Lu-DOTA(0),Tyr(3)]octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging. 2006;33(11):1346–51.

    Article  CAS  PubMed  Google Scholar 

  121. Benua RS, Cicale NR, Sonenberg M, et al. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Therapy, Nucl Med. 1962;87:171–82.

    CAS  Google Scholar 

  122. Cremonesi M, Ferrari M, Bodei L, et al. Dosimetry in peptide radionuclide receptor therapy: a review. J Nucl Med. 2006;47(9):1467–75.

    CAS  PubMed  Google Scholar 

  123. Bushnell D, Menda Y, Madsen M, et al. Assessment of hepatic toxicity from treatment with 90Y-SMT 487 (OctreoTher(TM)) in patients with diffuse somatostatin receptor positive liver metastases. Cancer Biother Radiopharm. 2003;18(4):581–8.

    Article  CAS  PubMed  Google Scholar 

  124. Kwekkeboom DJ, Mueller-Brand J, Paganelli G, et al. Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med. 2005;46(Suppl 1):62S–6S.

    CAS  PubMed  Google Scholar 

  125. Riff BP, Yang YX, Soulen MC, et al. Peptide receptor radionuclide therapy-induced hepatotoxicity in patients with metastatic neuroendocrine tumors. Clin Nucl Med. 2015;40(11):845–50.

    Article  PubMed  Google Scholar 

  126. Teunissen JJ, Krenning EP, de Jong FH, et al. Effects of therapy with [177Lu-DOTA 0,Tyr 3]octreotate on endocrine function. Eur J Nucl Med Mol Imaging. 2009;36(11):1758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Brunner P, Jorg AC, Glatz K, et al. The prognostic and predictive value of sstr2-immunohistochemistry and sstr2-targeted imaging in neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2017;44(3):468–75.

    Article  CAS  PubMed  Google Scholar 

  128. Kwekkeboom DJ, Teunissen JJ, Bakker WH, et al. Radiolabeled somatostatin analog [177Lu-DOTA0,Tyr3]octreotate in patients with endocrine gastroenteropancreatic tumors. J Clin Oncol. 2005;23(12):2754–62.

    Article  CAS  PubMed  Google Scholar 

  129. Clancy TE, Sengupta TP, Paulus J, et al. Alkaline phosphatase predicts survival in patients with metastatic neuroendocrine tumors. Dig Dis Sci. 2006;51(5):877–84.

    Article  CAS  PubMed  Google Scholar 

  130. Binderup T, Knigge U, Loft A, et al. 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res. 2010;16(3):978–85.

    Article  CAS  PubMed  Google Scholar 

  131. Garin E, Le Jeune F, Devillers A, et al. Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med. 2009;50(6):858–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Forrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Forrer, F. (2019). Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors. In: Giovanella, L. (eds) Nuclear Medicine Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-17494-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17494-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17493-4

  • Online ISBN: 978-3-030-17494-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics