Skip to main content

Homogenization of Piezoelectric Composites with Internal Structure and Inhomogeneous Polarization in ACELAN-COMPOS Finite Element Package

  • Chapter
  • First Online:
Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials

Abstract

The paper presents the current version of the finite element package ACELAN-COMPOS with the focus on its capabilities for solving the homogenization problems for piezoelectric composites with inhomogeneous polarization of piezoceramic phase. We describe the basic version of the effective moduli method, as well as the simplified theoretical approaches for taking into account the inhomogeneous polarization in the finite element solution of the homogenization problems. We provide the brief description of the main features of the ACELAN-COMPOS package, which we use for solving the described problems. The results of the numerical solution of the homogenization problems for porous piezoceramic composites demonstrate the importance of taking into account the inhomogeneous polarization field for the effective moduli determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barlow, J.: Optimal stress locations in finite element models. Int. J. Numer. Methods Eng. 10, 243–251 (1976)

    Article  Google Scholar 

  2. Bowen, C.R., Perry, A., Lewis, A.C.F., Kara, H.: Processing and properties of porous piezoelectric materials with high hydrostatic figures of merit. J. Eur. Ceram. Soc. 24, 541–545 (2004)

    Article  CAS  Google Scholar 

  3. Choudhary, S.K., Grosse, I.R.: Effective stress-based finite element error estimation for composite bodies. Eng. Fract. Mech. 50, 687–701 (1995)

    Article  Google Scholar 

  4. Feng, Z., Rowlands, R.E.: Smoothing finite-element and experimental hybrid technique for stress analyzing composites. Comput. Struct. 39, 631–639 (1991)

    Article  Google Scholar 

  5. Getman, I., Lopatin, S.: Theoretical and experimental investigation of the porous PZT ceramics. Ferroelectrics 186, 301–304 (1996)

    Article  Google Scholar 

  6. Hikita, K., Yamada, K., Nishioka, M., Ono, M.: Effect of porous structure to piezoelectric properties of PZT ceramics. Jpn. J. Appl. Phys. 22, 64–66 (1983)

    Article  CAS  Google Scholar 

  7. Iyer, S., Venkatesh, T.A.: Electromechanical response of porous piezoelectric materials: effects of porosity connectivity. Appl. Phys. Lett. 97, 072904 (2010)

    Article  Google Scholar 

  8. Iyer, S., Venkatesh, T.A.: Electromechanical response of (3–0) porous piezoelectric materials: effects of porosity shape. J. Appl. Phys. 110, 034109 (2011)

    Article  Google Scholar 

  9. Khoroshun, L.P., Maslov, B.P., Leshchenko, P.V.: Prediction of Effective Pproperties of Piezoactive Composite Materials. Naukova Dumka, Kiev (1989). (in Russian)

    Google Scholar 

  10. Kudimova, A.B., Mikhayluts, I.V., Nadolin, D.K., Nasedkin, A.V., Nasedkina, A.A., Oganesyan, P.A., Soloviev, A.N.: Computer design of porous and ceramic piezocomposites in the finite element package ACELAN. Procedia Struct. Integr. 6, 301–308 (2017)

    Article  Google Scholar 

  11. Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Nasedkina, A.A., Oganesyan, P.A., Soloviev, A.N.: Models of porous piezocomposites with 3–3 connectivity type in ACELAN finite element package. Mater. Phys. Mech. 37(1), 16–24 (2018)

    Google Scholar 

  12. Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Oganesyan, P.A., Soloviev, A.N.: Finite element homogenization models of bulk mixed piezocomposites with granular elastic inclusions in ACELAN package. Mater. Phys. Mech. 37(1), 25–33 (2018)

    Google Scholar 

  13. Kurbatova, N.V., Nadolin, D.K., Nasedkin, A.V., Nasedkina, A.A., Oganesyan, P.A., Skaliukh, A.S., Soloviev, A.N.: Models of active bulk composites and new opportunities of ACELAN finite element package. In: Sumbatyan, M.A. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Ser. Advanced Structured Materials, vol. 59, pp. 133–158. Springer, Singapore (2017)

    Google Scholar 

  14. Kurbatova, N.V., Nadolin, D.K., Nasedkin, A.V., Oganesyan, P.A., Soloviev, A.N.: Finite element approach for composite magneto-piezoelectric materials modeling in ACELAN-COMPOS package. In: Altenbach, H., Carrera, E., Kulikov, G. (eds.) Analysis and Modelling of Advanced Structures and Smart Systems. Ser. Advanced Structured Materials, vol. 81, pp. 69–88. Springer, Singapore (2018)

    Chapter  Google Scholar 

  15. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Elastic Body. Holden-Day, San Francisco, CA (1963)

    Google Scholar 

  16. Lewis, R.W.C., Dent, A.C.E., Stevens, R., Bowen, C.R.: Microstructural modelling of the polarization and properties of porous ferroelectrics. Smart Mater. Struct. 20, 085002 (2011)

    Article  Google Scholar 

  17. Li, J.F., Takagi, K., Ono, M., Pan, W., Watanabe, R., Almajid, A., Taya, M.: Fabrication and evaluation of porous piezoelectric ceramics and porosity-graded piezoelectric actuators. J. Am. Ceram. Soc. 86, 1094–1098 (2003)

    Article  CAS  Google Scholar 

  18. Liu, W., Du, L., Wang, Y., Yang, J., Xu, H.: Effects of foam composition on the microstructure and piezoelectric properties of macroporous PZT ceramics from ultrastable particle-stabilized foams. Ceram. Int. 39, 8781–8787 (2013)

    Article  CAS  Google Scholar 

  19. Meagher, D.: Octree Encoding: A New Technique for the Representation, Manipulation and Display of Arbitrary 3-D Objects by Computer. (Technical Report IPL-TR-80-111). Rensselaer Polytechnic Institute (1980)

    Google Scholar 

  20. Mercadelli, E., Sanson, A., Galassi, C.: Porous piezoelectric ceramics. In: Suaste-Gomez, E. (ed.) Piezoelectric Ceramics, pp. 111–128. InTechOpen (2010)

    Google Scholar 

  21. Nan, C.W., Weng, G.J.: Influence of polarization orientation on the effective properties of piezoelectric composites. J. Appl. Phys. 88(1), 416–423 (2000)

    Article  CAS  Google Scholar 

  22. Nasedkin, A.V., Shevtsova, M.S.: Improved finite element approaches for modeling of porous piezocomposite materials with different connectivity. In: Parinov, I.A. (ed.) Ferroelectrics and Superconductors: Properties and Applications, pp. 231–254. Nova Science Publications, New York, NY (2011)

    Google Scholar 

  23. Nasedkin, A.V., Shevtsova, M.S.: Effective moduli simulation for various types of porous piezoceramic materials. Vestnik DSTU 72–73(3–4), 16–26 (2013). (In Russian)

    Google Scholar 

  24. Nasedkin, A.V., Shevtsova, M.S.: Multiscale computer simulation of piezoelectric devices with elements from porous piezoceramics. In: Parinov, I.A., Chang, S.-H. (eds.) Physics and Mechanics of New Materials and their Applications, pp. 185–202. Nova Science Publications, New York, NY (2013)

    Google Scholar 

  25. Nasedkin, A., Skaliukh, A., Soloviev, A.: New models of coupled active materials for finite element package ACELAN. AIP Conf. Proc. 1637, 714–723 (2014)

    Article  Google Scholar 

  26. Nasedkin, A.V., Nasedkina, A.A., Rybyanets, A.N.: Numerical analysis of effective properties of heterogeneously polarized porous piezoceramic materials with local alloying pore surfaces. Mater. Phys. Mech. 40(1), 12–21 (2018)

    Google Scholar 

  27. Nasedkin, A.V., Kornievsky, A.S.: Finite element homogenization of elastic materials with open porosity at different scale levels. AIP Conf. Proc. 2046, 020064 (2018)

    Article  Google Scholar 

  28. Newnham, R.E., Skinner, D., Cross, L.E.: Connectivity and piezoelectric - pyroelectric composites. Mat. Res. Bull. 13(5), 525–536 (1978)

    Article  CAS  Google Scholar 

  29. Nguyen, B.V., Challagulla, K.S., Venkatesh, T.A., Hadjiloizi, D.A., Georgiades, A.V.: Effects of porosity distribution and porosity volume fraction on the electromechanical properties of 3–3 piezoelectric foams. Smart Mater. Struct. 25(12), 125028 (2016)

    Article  Google Scholar 

  30. Odegard, G.M.: Constitutive modeling of piezoelectric polymer composites. Acta Mater. 52(18), 5315–5330 (2004)

    Article  CAS  Google Scholar 

  31. Ringgaard, E., Lautzenhiser, F., Bierregaard, L.M., Zawada, T., Molz, E.: Development of porous piezoceramics for medical and sensor applications. Materials. 8(12), 8877–8889 (2015)

    Article  CAS  Google Scholar 

  32. Rybyanets, A.N.: Porous ceramic and piezocomposites: modeling, technology, and characterization. In: Newton, A. (ed.) Advances in Porous Ceramics, pp. 53–109. Nova Science Publications, New York, NY (2016)

    Google Scholar 

  33. Schwaab, H., Grunbichler, H., Supancic, P., Kamlah, M.: Macroscopical non-linear material model for ferroelectric materials inside a hybrid finite element formulation. Int. J. Solids Struct. 49, 457–469 (2012)

    Article  CAS  Google Scholar 

  34. Skaliukh, A.: About mathematical models of irreversible polarization processes of a ferroelectric and ferroelastic polycrystals. In: Irzaman, H. (ed.) Ferroelectrics and Their Applications, pp. 39–70. IntechOpen (2018)

    Google Scholar 

  35. Skaliukh, A., Nasedkin, A., Oganesyan, P., Soloviev, A.: Linear and nonlinear models of electroelasticity in the software package ACELAN. In: 2015 Joint IEEE International Symposium on Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoresponse Force Microscopy Workshop (PFM) (ISAF-ISIF-PFM 2015), 24–27 May, 2015, Singapore. IEEE Conference Publications, pp. 36–39 (2015)

    Google Scholar 

  36. Skaliukh, A.S., Soloviev, A.N., Oganesyan, P.A.: Modeling of piezoelectric elements with inhomogeneous polarization in ACELAN. Ferroelectrics 483(1), 95–101 (2015)

    Article  CAS  Google Scholar 

  37. Soloviev, A.N., Oganesyan, P.A., Skaliukh, A.S.: Modeling of piezoelectric elements with inhomogeneous polarization by using ACELAN. In: Parinov, I.A., Chang, S.-H., Theerakulpisut, S. (eds.) Advanced Materials - Studies and Applications, pp. 169–192. Nova Science Publications, New York, NY (2015)

    Google Scholar 

  38. Song, K.N.: A procedure for the improved continuous stress field of composite media. KSME Int. J. 12, 871–880 (1998)

    Article  Google Scholar 

  39. Stark, S., Neumeister, P., Balke, H.: A hybrid phenomenological model for ferroelectroelastic ceramics. Part I: single phased materials. J. Mech. Phys. Solids. 95, 774–804 (2016)

    Article  CAS  Google Scholar 

  40. Topolov, V.Y., Bowen, C.R., Bisegna, P.: Piezo-Active Composites: Microgeometry-Sensitivity Relations. Springer, Berlin (2018)

    Book  Google Scholar 

  41. Yang, A.K., Wang, C.A., Guo, R., Huang, Y.: Microstructure and electrical properties of porous PZT ceramics fabricated by different methods. J. Am. Ceram. Soc. 93, 1984–1990 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the Ministry of Science and Higher Education of the Russian Federation, project No. 9.1001.2017/4.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nasedkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gerasimenko, T.E. et al. (2019). Homogenization of Piezoelectric Composites with Internal Structure and Inhomogeneous Polarization in ACELAN-COMPOS Finite Element Package. In: Sumbatyan, M. (eds) Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials. Advanced Structured Materials, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-030-17470-5_8

Download citation

Publish with us

Policies and ethics