Skip to main content

Finite Element Study of Ceramic Matrix Piezocomposites with Mechanical Interface Properties by the Effective Moduli Method with Different Types of Boundary Conditions

  • Chapter
  • First Online:
Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 109))

Abstract

The paper deals with the problem of finding the effective moduli of a ceramic matrix composite with surface stresses on the interphase boundaries. The composite consists of a PZT ceramic matrix, elastic inclusions and interface boundaries. It is assumed that the interface stresses depend on the surface strains according to the Gurtin–Murdoch model. This model describes the size effects and contributes to the total stress-strain state only for nanodimensional inclusions. The homogenization problem was set and solved with the help of the effective moduli method for piezoelectric composites with interface boundaries and finite-element technologies used for simulating the representative volumes and solving the resulting boundary-value electroelastic problems. Here in the effective moduli method, different combinations of linear first-kind boundary conditions and constant second-kind boundary conditions for mechanical and electric fields were considered. The representative volume consisted of cubic finite elements with the material properties of the matrix or inclusions and also included the surface elements on the interfaces. Bulk elements were supplied with the material properties of the matrix or inclusions, using a simple random method. In the numerical example, the influence of the fraction of inclusions, the interface stresses and boundary conditions on the effective electroelastic modules were analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bobrov, S.V., Nasedkin, A.V., Rybjanets, A.N.: Finite element modeling of effective moduli of porous and polycrystalline composite piezoceramics. In: Topping, B.H.V., Montero, G., Montenegro, R. (eds.) Proceedings VIII International Conference on Computational Structures Technology, Civil-Comp Press, Stirlingshire, UK, Paper 107 (2006)

    Google Scholar 

  2. Chatzigeorgiou, G., Javili, A., Steinmann, P.: Multiscale modelling for composites with energetic interfaces at the micro-or nanoscale. Math. Mech. Solids. 20, 1130–1145 (2015)

    Article  Google Scholar 

  3. Chen, T.: Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects. Acta Mech. 196, 205–217 (2008)

    Article  Google Scholar 

  4. Dai, Sh., Gharbi, M., Sharma, P., Park, H.S.: Surface piezoelectricity: size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials. J. Appl. Phys. 110, 104305-1–104305-7 (2011)

    Google Scholar 

  5. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Advances in Applied Mechanics, vol. 42, pp. 1–68. Elsevier (2008)

    Google Scholar 

  6. Duan, H.L., Wang, J., Karihaloo, B.L., Huang, Z.P.: Nanoporous materials can be made stiffer than non-porous counterparts by surface modification. Acta Mater. 54, 2983–2990 (2006)

    Article  CAS  Google Scholar 

  7. Eremeyev, V.A.: On effective properties of materials at the nano- and microscales considering surface effects. Acta Mech. 227, 29–42 (2016)

    Article  Google Scholar 

  8. Eremeyev, V., Morozov, N.: The effective stiffness of a nanoporous rod. Dokl. Phys. 55(6), 279–282 (2010)

    Article  CAS  Google Scholar 

  9. Eremeyev, V.A., Nasedkin, A.V.: Mathematical models and finite element approaches for nanosized piezoelectric bodies with uncoupled and coupled surface effects. In: Sumbatyan, M.A. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Ser. Advanced Structured Materials, vol. 59, pp. 1–18. Springer, Singapore (2017)

    Google Scholar 

  10. Fang, X.-Q., Zhu, C.-S., Liu, J.-X., Liu, X.-L.: Surface energy effect on free vibration of nano-sized piezoelectric double-shell structures. Phys. B: Condens. Matter. 529, 41–56 (2018)

    Article  CAS  Google Scholar 

  11. Gu, S.-T., He, Q.-C.: Interfacial discontinuity relations for coupled multifield phenomena and their application to the modeling of thin interphases as imperfect interfaces. J. Mech. Phys. Solids. 59, 1413–1426 (2011)

    Google Scholar 

  12. Gu, S.-T., He, Q.-C., Pensee, V.: Homogenization of fibrous piezoelectric composites with general imperfect interfaces under anti-plane mechanical and in-plane electrical loadings. Mech. Mater. 88, 12–29 (2015)

    Article  Google Scholar 

  13. Gu, S.-T., Liu, J.-T., He. Q.-C.: Piezoelectric composites: Imperfect interface models, weak formulations and benchmark problems. Comp. Mater. Sci. 94, 182–190 (2014)

    Google Scholar 

  14. Gu, S.-T., Liu, J.-T., He. Q.-C.: The strong and weak forms of a general imperfect interface model for linear coupled multifield phenomena. Int. J. Eng. Sci. 85, 31–46 (2014)

    Google Scholar 

  15. Gu, S.-T., Qin, L.: Variational principles and size-dependent bounds for piezoelectric inhomogeneous materials with piezoelectric coherent imperfect interfaces. Int. J. Eng. Sci. 78, 89–102 (2014)

    Article  Google Scholar 

  16. Huang, G.Y., Yu, S.W.: Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring. Phys. Status Solidi B. 243(4), R22–R24 (2006)

    Article  CAS  Google Scholar 

  17. Javili, A., McBride, A., Mergheima, J., Steinmann, P., Schmidt, U.: Micro-to-macro transitions for continua with surface structure at the microscale. Int. J. Solids Struct. 50, 2561–2572 (2013)

    Article  Google Scholar 

  18. Jeong, J., Cho, M., Choi, J.: Effective mechanical properties of micro/nano-scale porous materials considering surface effects. Interact. Multiscale Mech. 4(2), 107–122 (2011)

    Article  Google Scholar 

  19. Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Nasedkina, A.A., Oganesyan, P.A., Soloviev, A.N.: Models of porous piezocomposites with 3–3 connectivity type in ACELAN finite element package. Mater. Phys. Mech. 37(1), 16–24 (2018)

    Google Scholar 

  20. Kudimova, A.B., Nadolin, D.K., Nasedkin, A.V., Oganesyan, P.A., Soloviev, A.N.: Finite element homogenization models of bulk mixed piezocomposites with granular elastic inclusions in ACELAN package. Mater. Phys. Mech. 37(1), 25–33 (2018)

    Google Scholar 

  21. Malakooti, M.H., Sodano, H.A.: Multi-inclusion modeling of multiphase piezoelectric composites. Compos.: Part B. 47, 181–189 (2013)

    Google Scholar 

  22. Nasedkin, A.V.: Some homogenization models of nanosized piezoelectric composite materials of types ceramics-pores and ceramics-ceramics with surface effects. In: Guemes, A., Benjeddou, A., Rodellar, J., Leng, J. (eds.) VIII ECCOMAS Thematic Conference on Smart Structures and Materials, VI Int. Conf. on Smart Materials and Nanotechnology in Engineering-SMART 2017, 5–8 June 2017, Madrid, Spain, pp. 1137–1147. CIMNE, Barcelona, Spain (2017)

    Google Scholar 

  23. Nasedkin, A.V., Eremeyev, V.A.: Harmonic vibrations of nanosized piezoelectric bodies with surface effects. ZAMM 94(10), 878–892 (2014)

    Article  Google Scholar 

  24. Nasedkin, A.V., Kornievsky, A.S.: Finite element modeling and computer design of anisotropic elastic porous composites with surface stresses. In: Sumbatyan, M.A. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials. Series Advanced Structured Materials, vol. 59, pp. 107–122. Springer, Singapore (2017)

    Google Scholar 

  25. Nasedkin, A.V., Kornievsky, A.S.: Finite element modeling of effective properties of elastic materials with random nanosized porosities. ycisl. meh. splos. sred – Comput. Continuum Mech. 10(4), 375–387 (2017)

    Google Scholar 

  26. Nasedkin, A.V., Nasedkina, A.A., Remizov, V.V.: Finite element modeling of porous thermoelastic composites with account for their microstructure. Vycisl. meh. splos. sred – Comput. Continuum Mech. 7(1), 100–109 (2014)

    Google Scholar 

  27. Nasedkin, A.V., Shevtsova, M.S.: Improved finite element approaches for modeling of porous piezocomposite materials with different connectivity. In: Parinov, I.A. (ed.) Ferroelectrics and Superconductors: Properties and Applications, pp. 231–254. Nova Science Publication, NY (2011)

    Google Scholar 

  28. Nasedkin, A.V., Shevtsova, M.S.: Multiscale computer simulation of piezoelectric devices with elements from porous piezoceramics In: Parinov, I.A., Chang, S.-H. (eds.) Physics and Mechanics of New Materials and Their Applications, pp. 185–202. Nova Science Publ., NY (2013)

    Google Scholar 

  29. Pan, X.H., Yu, S.W., Feng, X.Q.: A continuum theory of surface piezoelectricity for nanodielectrics. Sci. China: Phys. Mech. Astron. 54(4), 564–573 (2011)

    CAS  Google Scholar 

  30. Park, H.S., Devel, M., Wang, Z.: A new multiscale formulation for the electromechanical behavior of nanomaterials. Comput. Methods Appl. Mech. Eng. 200, 2447–2457 (2011)

    Article  Google Scholar 

  31. Rybyanets, A.N., Konstantinov, G.M., Naumenko, A.A., Shvetsova, N.A., Makarev, D.I., Lugovaya, M.A.: Elastic, dielectric, and piezoelectric properties of ceramic lead zirconate titanate/\(\alpha \)-Al\(_2\)O\(_3\) composites. Phys. Solid State. 57(3), 527–530 (2015)

    Google Scholar 

  32. Rybyanets, A.N., Naumenko, A.A., Konstantinov, G.M., Shvetsova, N.A., Lugovaya, M.A.: Elastic loss and dispersion in ceramic-matrix piezocomposites. Phys. Solid State. 57(3), 558–562 (2015)

    Article  CAS  Google Scholar 

  33. Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32(1), 83–100 (2016)

    Google Scholar 

  34. Wang, W., Li, P., Jin, F., Wang, J.: Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects. Compos. Struct. 140, 758–775 (2016)

    Article  Google Scholar 

  35. Wang, Z., Zhu, J., Jin, X.Y., Chen, W.Q., Zhang, Ch.: Effective moduli of ellipsoidal particle reinforced piezoelectric composites with imperfect interfaces. J. Mech. Phys. Solids. 65, 138–156 (2014)

    Article  Google Scholar 

  36. Xiao, J.H., Xu, Y.L., Zhang, F.C.: Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect. Acta Mech. 222, 59–67 (2011)

    Article  Google Scholar 

  37. Zhao, D., Liu, J.L., Wang, L.: Nonlinear free vibration of a cantilever nanobeam with surface effects: semi-analytical solutions. Int. J. Mech. Sci. 113, 184–195 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work for second author was supported by the Russian Science Foundation (grant number 15-19-10008-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nasedkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iovane, G., Nasedkin, A.V. (2019). Finite Element Study of Ceramic Matrix Piezocomposites with Mechanical Interface Properties by the Effective Moduli Method with Different Types of Boundary Conditions . In: Sumbatyan, M. (eds) Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials. Advanced Structured Materials, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-030-17470-5_12

Download citation

Publish with us

Policies and ethics