Skip to main content

On the Equations of the Surface Elasticity Model Based on the Theory of Polymeric Brushes

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 109))

Abstract

Motivating by theory of polymers, in particular, by the models of polymeric brushes we present here the homogenized (continual) two-dimensional (2D) model of surface elasticity. A polymeric brush consists of an system of almost aligned rigid polymeric chains. The interaction between chain links are described through Stockmayer potential, which take into account also dipole-dipole interactions. The presented 2D model can be treated as an highly anisotropic 2D strain gradient elasticity. The surface strain energy contains both first and second derivatives of the surface field of displacements. So it represents an intermediate class of 2D models of the surface elasticity such as Gurtin-Murdoch and Steigmann-Ogden ones.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)

    Article  Google Scholar 

  2. Aifantis, E.C.: Gradient deformation models at nano, micro, and macro scales. J. Eng. Mater. Technol. 121(2), 189–202 (1999)

    Article  Google Scholar 

  3. Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the existence of solution in the linear elasticity with surface stresses. ZAMM 90(3), 231–240 (2010)

    Article  Google Scholar 

  4. Altenbach, H., Eremeyev, V.A., Lebedev, L.P.: On the spectrum and stiffness of an elastic body with surface stresses. ZAMM 91(9), 699–710 (2011)

    Article  Google Scholar 

  5. Altenbach, H., Bîrsan, M., Eremeyev, V.A.: Cosserat-type rods. In: Altenbach H, Eremeyev VA (eds) Generalized Continua from the Theory to Engineering Applications, CISM International Centre for Mechanical Sciences (Courses and Lectures), vol. 541, Springer, Vienna, pp 179–248 (2013). https://doi.org/10.1007/978-3-7091-1371-4_4

  6. Azzaroni, O.: Polymer brushes here, there, and everywhere: recent advances in their practical applications and emerging opportunities in multiple research fields. J. Polym. Sci. Part A: Polym. Chem. 50(16), 3225–3258 (2012)

    Article  CAS  Google Scholar 

  7. Azzaroni, O., Szleifer, I. (eds.).: Polymer and Biopolymer Brushes: for Materials Science and Biotechnology. Wiley, Hoboken (2018)

    Google Scholar 

  8. Bîrsan, M., Altenbach, H., Sadowski, T., Eremeyev, V.A., Pietras, D.: Deformation analysis of functionally graded beams by the direct approach. Compos. Part B: Eng. 43(3), 1315–1328 (2012)

    Article  Google Scholar 

  9. Brittain, W.J., Minko, S.: A structural definition of polymer brushes. J. Polym. Sci. Part A: Polym. Chem. 45(16), 3505–3512 (2007)

    Article  CAS  Google Scholar 

  10. dell’Isola, F., Seppecher, P.: Edge contact forces and quasi-balanced power. Meccanica 32(1), 33–52 (1997)

    Google Scholar 

  11. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Advances in Applied Mechanics, vol 42, pp. 1–68. Elsevier (2008)

    Google Scholar 

  12. Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227(1), 29–42 (2016a)

    Article  Google Scholar 

  13. Eremeyev, V.A.: On equilibrium of a second-gradient fluid near edges and corner points. In: Naumenko, K., Aßmus, M. (eds.) Advanced Methods of Continuum Mechanics for Materials and Structures, Advanced Structured Materials, vol. 60, pp. 547–556. Springer, Singapore (2016b)

    Google Scholar 

  14. Eremeyev, V.A.: On the effective properties of elastic materials and structures at the micro- and nano-scale considering various models of surface elasticity. In: Trovalusci, P. (ed.) Materials with Internal Structure: Multiscale and Multifield Modeling and Simulation, pp. 29–41. Springer, Cham (2016c). https://doi.org/10.1007/978-3-319-21494-8_3

  15. Eremeyev, V.A.: On dynamic boundary conditions within the linear Steigmann–Ogden model of surface elasticity and strain gradient elasticity. In: Altenbach, H., Belyaev, A., Eremeyev, V.A., Krivtsov, A., Porubov, A.V. (eds.) Dynamical Processes in Generalized Continua and Structures, Advanced Structured Materials, vol. 103, pp 195–207. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11665-1_10

  16. Eremeyev, V.A., dell’Isola, F.: A note on reduced strain gradient elasticity. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds.) Generalized Models and Non-classical Approaches in Complex Materials 1, pp. 301–310. Springer International Publishing, Cham (2018)

    Google Scholar 

  17. Eremeyev, V.A., Lebedev, L.P.: Existence of weak solutions in elasticity. Math. Mech. Solids 18(2), 204–217 (2013)

    Article  Google Scholar 

  18. Eremeyev, V.A., Lebedev, L.P.: Mathematical study of boundary-value problems within the framework of Steigmann-Ogden model of surface elasticity. Continuum Mech. Thermodyn. 28(1–2), 407–422 (2016)

    Article  Google Scholar 

  19. Eremeyev, V.A., Cloud, M.J., Lebedev, L.P.: Applications of Tensor Analysis in Continuum Mechanics. World Scientific, New Jersey (2018a)

    Google Scholar 

  20. Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132, 175–196 (2018b). https://doi.org/10.1007/s10659-017-9660-3

    Article  Google Scholar 

  21. Feng, C., Huang, X.: Polymer brushes: efficient synthesis and applications. Acc. Chem. Res. 51(9), 2314–2323 (2018). https://doi.org/10.1021/acs.accounts.8b00307, pMID: 30137964

  22. Forest, S., Cordero, N.M., Busso, E.P.: First vs. second gradient of strain theory for capillarity effects in an elastic fluid at small length scales. Comput. Mater. Sci. 50(4), 1299–1304 (2011)

    Google Scholar 

  23. Gerasimov, R.A., Eremeyev, V.A., Petrova, T.O., Egorov, V.I., Maksimova, O.G., Maksimov, A.V.: Computer simulation of the mechanical properties of metamaterials. J. Phys. Conf. Ser. 738(1), 012100 (2016)

    Google Scholar 

  24. Gerasimov, R.A., Eremeyev, V.A., Petrova, T.O., Egorov, V.I., Maksimova, O.G., Maksimov, A.V.: Study of mechanical properties of ferroelectrics metamaterials using computer simulation. Ferroelectrics 508(1), 151–160 (2017a)

    Article  CAS  Google Scholar 

  25. Gerasimov, R.A., Maksimova, O.G., Petrova, T.O., Eremeyev, V.A., Maksimov, A.V.: Analytical and computer methods to evaluate mechanical properties of the metamaterials based on various models of polymeric chains. In: Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, pp. 35–69. Springer (2017b)

    Google Scholar 

  26. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration Mech. An 57(4), 291–323 (1975)

    Article  Google Scholar 

  27. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Sol. Struct. 14(6), 431–440 (1978)

    Article  Google Scholar 

  28. Han, Z., Mogilevskaya, S.G., Schillinger, D.: Local fields and overall transverse properties of unidirectional composite materials with multiple nanofibers and Steigmann-Ogden interfaces. Int. J. Solids Struct. 147, 166–182 (2018)

    Article  Google Scholar 

  29. Hencky, H.: Über die angenäherte Lösung von Stabilitätsproblemen im Raum mittels der elastischen Gelenkkette. der Esienbau 11, 437–452 (1920)

    Google Scholar 

  30. Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61(12), 2381–2401 (2013a)

    Article  CAS  Google Scholar 

  31. Javili, A., McBride, A., Steinmann, P.: Thermomechanics of solids with lower-dimensional energetics: on the importance of surface, interface, and curve structures at the nanoscale. a unifying review. Appl. Mech. Rev. 65(1), 010802 (2013b)

    Google Scholar 

  32. Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications in Mechanics. World Scientific, New Jersey (2010)

    Google Scholar 

  33. Liebold, C., Müller, W.H.: Are microcontinuum field theories of elasticity amenable to experiments? A review of some recent results. In: Differential Geometry and Continuum Mechanics, pp. 255–278. Springer (2015)

    Google Scholar 

  34. Lurie, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)

    Google Scholar 

  35. Nazarenko, L., Stolarski, H., Altenbach, H.: Effective properties of short-fiber composites with gurtin-murdoch model of interphase. Int. J. Solids Struct. 97, 75–88 (2016)

    Article  Google Scholar 

  36. Petrova, T., Maksimova, O., Gerasimov, R., Maksimov, A.: Application of analytical and numerical methods to simulation of systems with orientation interactions. Phys. Solid State 54(5), 937–939 (2012)

    Article  CAS  Google Scholar 

  37. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. A 453(1959), 853–877 (1997)

    Article  Google Scholar 

  38. Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. A 455(1982), 437–474 (1999)

    Article  Google Scholar 

  39. Stockmayer, W.H.: Theory of molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys. 11(2), 45–55 (1943)

    Article  CAS  Google Scholar 

  40. Turco, E.: Discrete is it enough? The revival of Piola-Hencky keynotes to analyze three-dimensional Elastica. Continuum Mech. Thermodyn. 30(5), 1039–1057 (2018)

    Article  Google Scholar 

  41. Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. für angew. Math. und Phys. 67(4), 85 (2016)

    Article  Google Scholar 

  42. Turco, E., Golaszewski, M., Giorgio, I., Placidi, L.: Can a hencky-type model predict the mechanical behaviour of pantographic lattices? In: Mathematical Modelling in Solid Mechanics, pp. 285–311. Springer (2017)

    Google Scholar 

  43. Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola–Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. (2018)

    Google Scholar 

  44. Wang, C.M., Zhang, H., Gao, R.P., Duan, W.H., Challamel, N.: Hencky bar-chain model for buckling and vibration of beams with elastic end restraints. Int. J. Struct. Stab. Dyn. 15(07), 1540,007 (2015)

    Google Scholar 

  45. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24, 52–82 (2011)

    Article  CAS  Google Scholar 

  46. Zemlyanova, A.Y., Mogilevskaya, S.G.: Circular inhomogeneity with Steigmann-Ogden interface: Local fields, neutrality, and Maxwell’s type approximation formula. Int. J. Solids Struct. 135, 85–98 (2018)

    Article  Google Scholar 

  47. Zhang, H., Wang, C., Ruocco, E., Challamel, N.: Hencky bar-chain model for buckling and vibration analyses of non-uniform beams on variable elastic foundation. Eng. Struct. 126, 252–263 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges financial support from the Russian Science Foundation under the grant “Methods of microstructural nonlinear analysis, wave dynamics and mechanics of composites for research and design of modern metamaterials and elements of structures made on its base” (No. 15-19-10008-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Eremeyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gerasimov, R.A., Petrova, T.O., Eremeyev, V.A., Maximov, A.V., Maximova, O.G. (2019). On the Equations of the Surface Elasticity Model Based on the Theory of Polymeric Brushes. In: Sumbatyan, M. (eds) Wave Dynamics, Mechanics and Physics of Microstructured Metamaterials. Advanced Structured Materials, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-030-17470-5_11

Download citation

Publish with us

Policies and ethics