Skip to main content

Independent Lazy Better-Response Dynamics on Network Games

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11485))

Included in the following conference series:

  • 581 Accesses

Abstract

We study an independent best-response dynamics on network games in which the nodes (players) decide to revise their strategies independently with some probability. We provide several bounds on the convergence time to an equilibrium as a function of this probability, the degree of the network, and the potential of the underlying games. These dynamics are somewhat more suitable for distributed environments than the classical better- and best-response dynamics where players revise their strategies “sequentially”, i.e., no two players revise their strategies simultaneously.

A full version of this work is available online at [27].

Supported by IRIF (CNRS UMR 8243) and Inria project-team GANG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this work we consider only pure Nash equilibria, which are the equilibria that occur in certain games when each player chooses one strategy out of the available ones. Other equilibrium concepts are also studied, most notably the mixed Nash equilibrium, where each player chooses a probability distribution over the available strategies.

  2. 2.

    As we assume that strategy sets are finite, the potential function is defined by a finite set of values. Rescaling the potential function so that different values are at least 1 apart, and then truncating the values to integers allows to obtain an equivalent game (with same dynamics). Additionally shifting the values allows to obtain a non-negative potential function for that game.

References

  1. Alós-Ferrer, C., Netzer, N.: The logit-response dynamics. Games Econ. Behav. 68(2), 413–427 (2010)

    Article  MathSciNet  Google Scholar 

  2. Alós-Ferrer, C., Netzer, N.: On the convergence of logit-response to (strict) nash equilibria. Econ. Theory Bull. 5(1), 1–8 (2017)

    Article  MathSciNet  Google Scholar 

  3. Auletta, V., Ferraioli, D., Pasquale, F., Penna, P., Persiano, G.: Logit dynamics with concurrent updates for local interaction potential games. Algorithmica 73(3), 511–546 (2015)

    Article  MathSciNet  Google Scholar 

  4. Babichenko, Y., Tamuz, O.: Graphical potential games. J. Econ. Theory 163, 889–899 (2016)

    Article  MathSciNet  Google Scholar 

  5. Bailey, J.P., Piliouras, G.: Multiplicative weights update in zero-sum games. In: ACM Conference on Economics and Computation (EC), pp. 321–338 (2018)

    Google Scholar 

  6. Blume, L.E.: The statistical mechanics of strategic interaction. Games Econ. Behav. 5(3), 387–424 (1993)

    Article  MathSciNet  Google Scholar 

  7. Blume, L.E.: Population Games. Addison-Wesley, Boston (1998)

    MATH  Google Scholar 

  8. Cai, Y., Daskalakis, C.: On minmax theorems for multiplayer games. In: Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 217–234 (2011)

    Google Scholar 

  9. Chien, S., Sinclair, A.: Convergence to approximate nash equilibria in congestion games. Games Econ. Behav. 71(2), 315–327 (2011)

    Article  MathSciNet  Google Scholar 

  10. Coucheney, P., Durand, S., Gaujal, B., Touati, C.: General revision protocols in best response algorithms for potential games. In: Netwok Games, Control and OPtimization (NetGCoop) (2014)

    Google Scholar 

  11. Daskalakis, C., Papadimitriou, C.H.: On a network generalization of the minmax theorem. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 423–434. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02930-1_35

    Chapter  Google Scholar 

  12. Dyer, M., Mohanaraj, V.: Pairwise-interaction games. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 159–170. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_14

    Chapter  Google Scholar 

  13. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  14. Ellison, G.: Learning, local interaction, and coordination. Econometrica 61(5), 1047–1071 (1993)

    Article  MathSciNet  Google Scholar 

  15. Fanelli, A., Moscardelli, L., Skopalik, A.: On the impact of fair best response dynamics. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 360–371. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2_33

    Chapter  MATH  Google Scholar 

  16. Fatès, N., Regnault, D., Schabanel, N., Thierry, É.: Asynchronous behavior of double-quiescent elementary cellular automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 455–466. Springer, Heidelberg (2006). https://doi.org/10.1007/11682462_43

    Chapter  Google Scholar 

  17. Ferraioli, D., Goldberg, P.W., Ventre, C.: Decentralized dynamics for finite opinion games. Theor. Comput. Sci. 648, 96–115 (2016)

    Article  MathSciNet  Google Scholar 

  18. Ferraioli, D., Penna, P.: Imperfect best-response mechanisms. Theory Comput. Syst. 57(3), 681–710 (2015)

    Article  MathSciNet  Google Scholar 

  19. Fotakis, D., Kaporis, A.C., Spirakis, P.G.: Atomic congestion games: fast, myopic and concurrent. Theory Comput. Syst. 47(1), 38–59 (2010)

    Article  MathSciNet  Google Scholar 

  20. Kearns, M., Littman, M.L., Singh, S.: Graphical models for game theory. In: Conference on Uncertainty in Artificial Intelligence (UAI), pp. 253–260 (2001)

    Google Scholar 

  21. Kreindler, G.E., Young, H.P.: Rapid innovation diffusion in social networks. Proc. Natl. Acad. Sci. 111(Suppl. 3), 10881–10888 (2014)

    Article  MathSciNet  Google Scholar 

  22. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  23. Martinelli, F.: Lectures on Glauber dynamics for discrete spin models. In: Bernard, P. (ed.) Lectures on Probability Theory and Statistics. LNM, vol. 1717, pp. 93–191. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48115-7_2

    Chapter  MATH  Google Scholar 

  24. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav.or 14(1), 124–143 (1996)

    Article  MathSciNet  Google Scholar 

  25. Montanari, A., Saberi, A.: The spread of innovations in social networks. Proc. Natl. Acad. Sci. 107(47), 20196–20201 (2010)

    Article  Google Scholar 

  26. Penna, P.: The price of anarchy and stability in general noisy best-response dynamics. Int. J. Game Theory 47(3), 839–855 (2018)

    Article  MathSciNet  Google Scholar 

  27. Penna, P., Viennot, L.: Independent lazy better-response dynamics on network games. CoRR, abs/1609.08953 (2016)

    Google Scholar 

  28. Piliouras, G., Shamma, J.S.: Optimization despite chaos: convex relaxations to complex limit sets via poincaré recurrence. In: Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 861–873 (2014)

    Google Scholar 

  29. Rouquier, J., Regnault, D., Thierry, E.: Stochastic minority on graphs. Theor. Comput. Sci. 412(30), 3947–3963 (2011)

    Article  MathSciNet  Google Scholar 

  30. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput. 20(1), 56–87 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Damien Regnault and Nicolas Schabanel for inspiring discussions on closely related problems, and an anonymous reviewer for pointing out the last open question. Part of this work has been done while the first author was at LIAFA, Université Paris Diderot, supported by the French ANR Project DISPLEXITY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Penna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Penna, P., Viennot, L. (2019). Independent Lazy Better-Response Dynamics on Network Games. In: Heggernes, P. (eds) Algorithms and Complexity. CIAC 2019. Lecture Notes in Computer Science(), vol 11485. Springer, Cham. https://doi.org/10.1007/978-3-030-17402-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17402-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17401-9

  • Online ISBN: 978-3-030-17402-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics