Skip to main content

Eternal Domination in Grids

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11485))

Included in the following conference series:

Abstract

In the eternal domination game played on graphs, an attacker attacks a vertex at each turn and a team of guards must move a guard to the attacked vertex to defend it. The guards may only move to adjacent vertices on their turn. The goal is to determine the eternal domination number \(\gamma ^{\infty }_{all}\) of a graph which is the minimum number of guards required to defend against an infinite sequence of attacks.

This paper continues the study of the eternal domination game on strong grids \(P_n\boxtimes P_m\). Cartesian grids \(P_n \,\square \, P_m\) have been vastly studied with tight bounds existing for small grids such as \(k\times n\) grids for \(k\in \{2,3,4,5\}\). It was recently proven that \(\gamma ^{\infty }_{all}(P_n \,\square \, P_m)=\gamma (P_n \,\square \, P_m)+O(n+m)\) where \(\gamma (P_n \,\square \, P_m)\) is the domination number of \(P_n \,\square \, P_m\) which lower bounds the eternal domination number [Lamprou et al. CIAC 2017]. We prove that, for all \(n,m\in \mathbb {N^*}\) such that \(m\ge n\), \(\lfloor \frac{n}{3}\rfloor \lfloor \frac{m}{3}\rfloor +{\varOmega }(n+m)=\gamma _{all}^{\infty } (P_{n}\boxtimes P_{m})=\lceil \frac{n}{3}\rceil \lceil \frac{m}{3}\rceil + O(m\sqrt{n})\) (note that \(\lceil \frac{n}{3}\rceil \lceil \frac{m}{3}\rceil \) is the domination number of \(P_n\boxtimes P_m\)). Our technique may be applied to other “grid-like” graphs.

This work has been partially supported by ANR program “Investments for the Future” under reference ANR-11-LABX-0031-01, the Inria Associated Team AlDyNet. Due to a lack of space, several proofs have been omitted and can be found in [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(D \subseteq V\) is a dominating set of G if every vertex is in D or adjacent to a vertex in D.

  2. 2.

    \(\alpha (G)\) is the maximum size of an independent set in G.

  3. 3.

    \(\theta (G)\) is the minimum number of complete subgraphs of G whose union covers V(G).

References

  1. Arquilla, J., Fredricksen, H.: “Graphing” an optimal grand strategy. Mil. Oper. Res. 1(3), 3–17 (1995)

    Article  Google Scholar 

  2. Bagan, G., Joffard, A., Kheddouci, H.: Eternal dominating sets on digraphs and orientations of graphs. CoRR, abs/1805.09623 (2018)

    Google Scholar 

  3. Bard, S., Duffy, C., Edwards, M., Macgillivray, G., Yang, F.: Eternal domination in split graphs. J. Comb. Math. Comb. Comput. 101, 121–130 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Beaton, I., Finbow, S., MacDonald, J.A.: Eternal domination numbers of \(4\times n\) grid graphs. J. Comb. Math. Comb. Comput. 85, 33–48 (2013)

    MATH  Google Scholar 

  5. Braga, A., Souza, C., Lee, O.: The eternal dominating set problem for proper interval graphs. Inf. Process. Lett. 115, 582–587 (2015)

    Article  MathSciNet  Google Scholar 

  6. Burger, A., Cockayne, E.J., Gründlingh, W.R., Mynhardt, C.M., van Vuuren, J.H., Winterbach, W.: Infinite order domination in graphs. J. Comb. Math. Comb. Comput. 50, 179–194 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Cohen, N., Mc Inerney, F., Nisse, N., Pérennes, S.: Study of a combinatorial game in graphs through linear programming. Algorithmica (2018, to appear)

    Google Scholar 

  8. Cohen, N., Martins, N.A., Mc Inerney, F., Nisse, N., Pérennes, S., Sampaio, R.: Spy-game on graphs: complexity and simple topologies. Theor. Comput. Sci. 725, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  9. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  10. Finbow, S., Messinger, M.E., van Bommel, M.F.: Eternal domination in \(3 \times n\) grids. Australas. J. Comb. 61, 156–174 (2015)

    MATH  Google Scholar 

  11. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T.: Eternal security in graphs. J. Comb. Math. Comb. Comput. 52, 160–180 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Goldwasser, J.L., Klostermeyer, W.F., Mynhardt, C.M.: Eternal protection in grid graphs. Util. Math. 91, 47–64 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Gonçalves, D., Pinlou, A., Rao, M., Thomassé, S.: The domination number of grids. SIAM J. Discrete Math. 25(3), 1443–1453 (2011)

    Article  MathSciNet  Google Scholar 

  14. Mc Inerney, F., Nisse, N., Pérennes, S.: Eternal domination in grids. Technical report, INRIA (2018). RR, https://hal.archives-ouvertes.fr/hal-01790322

  15. Klostermeyer, W.F., Lawrence, M., MacGillivray, G.: Dynamic dominating sets: the eviction model for eternal domination. Manuscript (2014)

    Google Scholar 

  16. Klostermeyer, W.F., MacGillivray, G.: Eternal dominating sets in graphs. J. Comb. Math. Comb. Comput. 68, 97–111 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Klostermeyer, W.F., Mynhardt, C.M.: Eternal total domination in graphs. Ars Comb. 68, 473–492 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Klostermeyer, W.F., Mynhardt, C.M.: Protecting a graph with mobile guards. Appl. Anal. Discrete Math. 10, 1–29 (2014)

    Article  MathSciNet  Google Scholar 

  19. Lamprou, I., Martin, R., Schewe, S.: Perpetually dominating large grids. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 393–404. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_33

    Chapter  Google Scholar 

  20. Messinger, M.E., Delaney, A.Z.: Closing the gap: eternal domination on \(3\times n\) grids. Contrib. Discrete Math. 12(1), 47–61 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Revelle, C.S.: Can you protect the Roman Empire? Johns Hopkins Mag. 50(2), 40 (1997)

    Google Scholar 

  22. Revelle, C.S., Rosing, K.E.: Defendens imperium romanum: a classical problem in military strategy. Am. Math. Mon. 107, 585–594 (2000)

    Article  MathSciNet  Google Scholar 

  23. Stewart, I.: Defend the Roman Empire! Sci. Am. 281, 136–138 (1999)

    Google Scholar 

  24. van Bommel, C.M., van Bommel, M.F.: Eternal domination numbers of \(5\times n\) grid graphs. J. Comb. Math. Comb. Comput. 97, 83–102 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fionn Mc Inerney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mc Inerney, F., Nisse, N., Pérennes, S. (2019). Eternal Domination in Grids. In: Heggernes, P. (eds) Algorithms and Complexity. CIAC 2019. Lecture Notes in Computer Science(), vol 11485. Springer, Cham. https://doi.org/10.1007/978-3-030-17402-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17402-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17401-9

  • Online ISBN: 978-3-030-17402-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics