Skip to main content

A Note on Nonautonomous Discrete Dynamical Systems

In Honour of Manuel López-Pellicer

  • Conference paper
  • First Online:
Descriptive Topology and Functional Analysis II (TFA 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 286))

Included in the following conference series:

  • 651 Accesses

Abstract

A discrete nonautonomous dynamical system (a NDS for short) is a pair \((X,f_{1,\infty })\) where X is a topological space and \(f_{1,\infty }\) is a sequence of continuous functions \(\left( f_{1},f_{2},\ldots \right) \) from X to itself. The orbit of a point \(x \in X\) is defined as the set \(\mathscr {O}_{f_{1,\infty }}(x) := \{x, f_{1}^{1}(x), f_{1}^{2}(x), \ldots , f_{1}^{n}(x), \ldots \}\). NDS’ were introduced by S. Kolyada and L. Snoha in 1996 and they are related to several mathematical fields; among others the theory of difference equations. Notice that NDS’ generalize the usual notion of a discrete dynamical system: indeed, if suffices to take \(f_{1,\infty }\) as a constant sequence. The aim of this note is twofold. First we analyze several definitions of a periodic point in the framework of NDS’. The interest of this notion comes from the fact that, in the realm of discrete dynamical systems, the third condition of the definition of Devaney’s chaos (sensitivity) follows from the first two (transitivity and the set of periodic points is dense). This result need not be true for NDS’ and the results in this context depend upon the definition of a periodic point we consider. Secondly, we present several results on transitivity. In contrast to the situation for discrete dynamical systems, there exists second countable, perfect metric NDS’ with the Baire property which have transitive points but they are not transitive. Among other things, we study the relationships between these two notions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, P., Kawamura, S.: Chaotic homeomorphisms of compact subspaces of the real line. Bull. Yamagata Univ. Nat. Sci. 16(4), 127–133 (2007)

    Google Scholar 

  2. Akin, E.: The General Topology of Dynamical Systems. Graduate Studies in Mathematics, vol. 1. American Mathematical Society, Providence (1993)

    Google Scholar 

  3. Akin, E., Auslander, J., Berg, K.: When is a transisitive map chaotic? Convergence in Ergodic Theory and Probability (Columbus, OH, 1993). Ohio State University Mathematical Research Institute Publication, vol. 5, pp. 25–40. de Gruyter, Berlin (1996)

    Google Scholar 

  4. Alseda, L.L., Kolyada, S., Llibre, J., Snoha, L.: Entropy and periodic points for transitive maps. Trans. Am. Math. Soc. 351(4), 1551–1573 (1999)

    Google Scholar 

  5. Balibrea, F., Caraballo, T., Kloeden, P.D., Valero, J.: Recent developments in dynamical systems: three perspectives. Inter. J. Bifurc. Chaos 20(9), 2591–2636 (2010)

    Article  MathSciNet  Google Scholar 

  6. Balibrea, F., Oprocha, P.: Weak mixing and chaos in nonautonomous discrete systems. Appl. Math. Lett. 25, 1135–1141 (2012)

    Article  MathSciNet  Google Scholar 

  7. Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s definition of chaos. Am. Math. Mon. 99(4), 332–334 (1992)

    Article  MathSciNet  Google Scholar 

  8. Brouwer, L.E.J.: On the structure of perfect sets of points. In: KNAW, Proceedings, vol. 12, pp. 785–794. Amsterdam, Netherlands (1910)

    Google Scholar 

  9. Devaney, R.L.: An Introduction to Chaotic Dynamical Systems. Reprint of the Second (1989) edn. Studies in Nonlinearity. Westview Press, Boulder (2003)

    Google Scholar 

  10. Dugundji, J.: Topology. Reprinting of the 1966 Original. Allyn and Bacon Series in Advanced Mathematics. Allyn and Bacon Inc, Boston, Mass-London-Sydney (1978)

    Google Scholar 

  11. Dvorakova, J.: Chaos in nonautonomous discrete dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 17, 4649–4652 (2012)

    Article  MathSciNet  Google Scholar 

  12. Engelking, R.: General Topology. Translated from the Polish by the Author. Sigma Series in Pure Mathematics, vol. 6, 2nd edn. Heldermann, Berlin (1989)

    Google Scholar 

  13. Grosse-Erdmann, K.-G., Peris, A.: Linear Chaos. Universitext, Springer London Ltd, London (2011)

    Book  Google Scholar 

  14. Huang, Q., Shi, Y., Zhang, L.: Sensitivity of non-autonomous discrete dynamical systems. Appl. Math. Lett. 39, 31–34 (2015)

    Article  MathSciNet  Google Scholar 

  15. Kolyada, S., Snoha, L.: Topological entropy of nonautonomous dynamical systems. Random Comput. Dyn. 4(2–3), 205–233 (1996)

    Google Scholar 

  16. Kurka, P.: Topological and Symbolic Dynamics. Cours Sépecialisés [Specialized Courses], vol. 11. Société Mathématique de France, Paris (2003)

    Google Scholar 

  17. Lan, Y.: Chaos in nonautonomous discrete fuzzy dynamical systems. J. Nonlinear Sci. Appl. 9, 404–412 (2016)

    Article  MathSciNet  Google Scholar 

  18. Liu, L., Sun, Y.: Weakly mixing sets and transitive sets for non-autonomous discrete systems. Adv. Difference Equ. 17, 9 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Lu, T., Zhu, P., Wu, X.: The retentivity of several kinds of chaos under uniformly conjugation. Int. Math. Forum 8(25), 1243–1251 (2013). Hikari Ltd. http://www.m-hikari.com. https://doi.org/10.12988/imf.2013.35107

    Article  MathSciNet  Google Scholar 

  20. Miralles, A., Murillo-Arcila, M., Sanchis, M.: Sensitive dependence for nonautonomous discrete dynamical systems. J. Math. Anal. Appl. 463(1), 268–275 (2018)

    Article  MathSciNet  Google Scholar 

  21. Sánchez, I., Sanchis, M., Villanueva, H.: Chaos in hyperspaces of nonautonomous discrete systems. Chaos Solitons Fractals 94, 68–74 (2017)

    Article  MathSciNet  Google Scholar 

  22. Shi, Y., Chen, G.: Chaos of time-varying discrete dynamical systems. J. Differ. Equ. Appl. 15, 429–449 (2009)

    Article  MathSciNet  Google Scholar 

  23. Shi, Y.: Chaos in nonautonomous discrete dynamcial systems approached by their induced mappings. Inter. J. Bifurc. Chaos 22(11), 1–12 (2012)

    Article  Google Scholar 

  24. Silverman, S.: On maps with dense orbits and the definition of chaos. Rocky Mt. J. Math. 22, 353–375 (1992)

    Article  MathSciNet  Google Scholar 

  25. Zhu, H., Liu, L., Wang, J.: A note on stronger forms of sensitivity for inverse limit dynamical systems. Adv. Differ. Equ. 2015(101), 1–9 (2015)

    MathSciNet  Google Scholar 

  26. Zhu, H., Shi, Y., Shao, H.: Devaney chaos in non-autonomous discrete systems. Int. J. Bifurc. Chaos 26(11), 10 (2016). Article ID 1650190

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The present paper was written during the first author’s sabbatical at the Institut de Matemàtiques i Aplicacions de Castelló, University Jaume I, Spain with the support of PASPA/DGAPA/UNAM. The second author was supported by Spanish Government (MTM2016-77143-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Sanchis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Acosta, G., Sanchis, M. (2019). A Note on Nonautonomous Discrete Dynamical Systems. In: Ferrando, J. (eds) Descriptive Topology and Functional Analysis II. TFA 2018. Springer Proceedings in Mathematics & Statistics, vol 286. Springer, Cham. https://doi.org/10.1007/978-3-030-17376-0_2

Download citation

Publish with us

Policies and ethics