Skip to main content

Separable (and Metrizable) Infinite Dimensional Quotients of \(C_p(X)\) and \(C_c(X)\) Spaces

In Honour of Manuel López-Pellicer

  • Conference paper
  • First Online:
Descriptive Topology and Functional Analysis II (TFA 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 286))

Included in the following conference series:

  • 612 Accesses

Abstract

The famous Rosenthal-Lacey theorem states that for each infinite compact set K the Banach space C(K) of continuous real-valued functions on a compact space K admits a quotient which is either an isomorphic copy of c or \(\ell _{2}\). Whether C(K) admits an infinite dimensional separable (or even metrizable) Hausdorff quotient when the uniform topology of C(K) is replaced by the pointwise topology remains as an open question. The present survey paper gathers several results concerning this question for the space \(C_{p}(K)\) of continuous real-valued functions endowed with the pointwise topology. Among others, that \(C_{p}(K)\) has an infinite dimensional separable quotient for any compact space K containing a copy of \(\beta \mathbb {N}\). Consequently, this result reduces the above question to the case when K is a Efimov space (i.e. K is an infinite compact space that contains neither a non-trivial convergent sequence nor a copy of \(\beta \mathbb {N}\)). On the other hand, although it is unknown if Efimov spaces exist in ZFC, we note under \(\lozenge \) (applying some result due to R. de la Vega), that for some Efimov space K the space \(C_{p}(K)\) has an infinite dimensional (even metrizable) separable quotient. The last part discusses the so-called Josefson–Nissenzweig property for spaces \(C_{p}(K)\), introduced recently in [3], and its relation with the separable quotient problem for spaces \(C_{p}(K)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arhangel’skii, A.V.: General Topology III. Encyclopedia of Mathematical Sciences, vol. 51. Springer, Berlin (1995)

    Google Scholar 

  2. Arhangel’skii, A.V.: Topological Function Spaces. Applied Mathematics, vol. 78. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  3. Banakh, T., Kąkol, J., Śliwa, W.: Josefson-Nissenzweig property for \(C_{p}\)-spaces. Submitted

    Google Scholar 

  4. Banakh, T., Kąkol, J., Śliwa, W.: Metrizable quotients of \(C_p\)-spaces. Topol. Appl. 249, 95–102 (2018)

    Google Scholar 

  5. Cembranos, P.: \(C\left( K, E\right) \) contains a complemented copy of \(c_{0}\). Proc. Am. Math. Soc. 91, 556–558 (1984)

    MathSciNet  MATH  Google Scholar 

  6. Dales, H.D., Dashiell, Jr., F.H., Lau, A.T.M., Strauss, D.: Banach Spaces of Continuous Functions as Dual Spaces. Springer, Berlin (2016)

    Google Scholar 

  7. Diestel, J.: Sequences and Series in Banach Spaces. Springer, Berlin (1984)

    Chapter  Google Scholar 

  8. Dow, A.: Efimov spaces and the splitting number. Topol. Proc. 29, 105–113 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Dow, A.: Compact sets without converging sequences in the random real model. Acta Math. Univ. Comenianae 76, 161–171 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Dow, A., Shelah, S.: An Efimov space from Martin’s Axiom. Houston J. Math. 39, 1423–1435 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Efimov, B.: Subspaces of dyadic bicompacta. Dokl. Akad. Nauk. USSR 185, 987–990 (1969) (Russian); English transl.: Sov. Math. Dokl. 10, 453–456 (1969)

    Google Scholar 

  12. Engelking, R.: General Topology. Berlin (1989)

    Google Scholar 

  13. Fajardo, R.: Quotients of indecomposable Banach spaces of continuous functions. Stud. Math. 212, 259–283 (2012)

    Article  MathSciNet  Google Scholar 

  14. Fedorcuk, V.V.: A bicompactum whose infinite closed subsets are all n-dimensional. Math. USSR. Sbornik 25, 37–57 (1976)

    Article  Google Scholar 

  15. Fedorcuk, V.V.: Completely closed mappings, and the consistency of certain general topology theorems with the axioms of set theory. Math. USSR. Sbornik 28, 3–33 (1976)

    Article  MathSciNet  Google Scholar 

  16. Gabriyelyan, S., Kąkol, J., Kubiś, W., Marciszewski, M.: Networks for the weak topology of Banach and Fréchet spaces. J. Math. Anal. Appl. 142, 1183–1199 (2015)

    Article  MathSciNet  Google Scholar 

  17. Geschke, S.: The coinitialities of Efimov spaces. In: Babinkostova et al. (eds.) Set Theory and its Applications. Contemporary Mathematics, vol. 533, pp. 259–265 (2011)

    Google Scholar 

  18. Gillman, L., Jerison, M.: Rings of Continuous Functions. Graduate Texts in Mathematics. Springer, Berlin (1976)

    Google Scholar 

  19. Hart, P.: Efimov’s problem. In: Pearl., E. (ed.) Problems in Topology II, pp. 171–177 (2007)

    Google Scholar 

  20. Horváth, J.: Topological Vector Spaces and Distributions, I. Addison-Wesley, Reading (1966)

    MATH  Google Scholar 

  21. Johnson, W.B., Rosenthal, H.P.: On weak*-basic sequences and their applications to the study of Banach spaces. Stud. Math. 43, 166–168 (1975)

    Google Scholar 

  22. Kąkol, J., Saxon, S.A., Tood, A.: Barrelled spaces with(out) separable quotients. Bull. Aust. Math. Soc. 90, 295—303 (2014)

    Google Scholar 

  23. Kąkol, J., Saxon, S.A.: Separable quotients in \(C_{c}(X)\), \(C_{p}(X)\) and their duals. Proc. Am. Math. Soc. 145, 3829–3841 (2017)

    Google Scholar 

  24. Kąkol, J., Śliwa, W.: Efimov spaces and the separable quotient problem for spaces \(C_p (K)\). J. Math. Anal. App. 457, 104–113 (2018)

    Google Scholar 

  25. Kąkol, J., Śliwa, W.: Remarks concerning the separable quotient problem. Note Mat. 13, 277–282 (1993)

    Google Scholar 

  26. Kalenda, O.: A characterization of Valdivia compact spaces. Collect. Math. 51, 59–81 (2000)

    MathSciNet  MATH  Google Scholar 

  27. Lacey, E.: Separable quotients of Banach spaces. An. Acad. Brasil. Ciènc. 44, 185–189 (1972)

    MathSciNet  MATH  Google Scholar 

  28. McCoy, R.A., Ntantu, I.: Completeness properties of function spaces. Topol. Appl. 22(2), 191–206 (1986)

    Article  MathSciNet  Google Scholar 

  29. Pérez Carreras, P., Bonet, J.: Barrelled Locally Convex Spaces. North-Holland Mathematics Studies, vol. 131. North-Holland, Amsterdam (1987)

    Google Scholar 

  30. Rosenthal, H.P.: On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from \(L_{p}\left( \mu \right) \) to \(L_{r}\left( \nu \right)\). J. Funct. Anal. 4, 176–214 (1969)

    Article  Google Scholar 

  31. Shapirovsky, V.: On mappings onto Tychonoff cubes (in Russian). Uspekhi Mat. Nauk. 35, 122–130 (1980)

    MathSciNet  Google Scholar 

  32. Vega, De la R.: Basic homogeneity properties in the class of zero-dimensional compact spaces. Topol. Appl. 155, 225–232 (2008)

    Google Scholar 

  33. Vega, De la R.: Homogeneity properties on compact spaces. Disserationes, University of Wisconsin-Madison (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Kąkol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kąkol, J. (2019). Separable (and Metrizable) Infinite Dimensional Quotients of \(C_p(X)\) and \(C_c(X)\) Spaces. In: Ferrando, J. (eds) Descriptive Topology and Functional Analysis II. TFA 2018. Springer Proceedings in Mathematics & Statistics, vol 286. Springer, Cham. https://doi.org/10.1007/978-3-030-17376-0_10

Download citation

Publish with us

Policies and ethics