Skip to main content

Piloting a Mobile Tele-simulation Unit to Train Rural and Remote Emergency Healthcare Providers

  • Chapter
  • First Online:
Delivering Superior Health and Wellness Management with IoT and Analytics

Part of the book series: Healthcare Delivery in the Information Age ((Healthcare Delivery Inform. Age))

Abstract

Health-care providers in rural and remote areas do not have the same access to training as those in urban areas. This poses a serious challenge to equitable health-care delivery. This paper outlines the development and piloting of a mobile tele-simulation unit (MTU) prototype to address the challenges of training in rural and remote settings. The goal of the MTU is to increase opportunities for emergency health-care providers to access training remotely. Mobile tele-simulation is a novel approach to remote medical training with many potential benefits. However, one must take into consideration the effective development and implementation of such a unit. In this paper, we describe our multidisciplinary mixed-methods approach to develop and pilot the MTU using proven theoretical frameworks. We also discuss the developmental challenges, and findings on trainee satisfaction and learning outcomes. Initial results are promising and warrant a formal evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.dynamicairshelters.com/

References

  • Anaya, G. (1999). College impact on student learning: Comparing the use of self-reported gains, standardized test scores, and college grades. Research in Higher Education, 40(5), 499–526. Retrieved from http://www.jstor.org/stable/40196370.

    Article  Google Scholar 

  • Bischof, J. J., Panchal, A. R., Finnegan, G. I., & Terndrup, T. E. (2016). Creation and validation of a novel mobile simulation laboratory for high fidelity, prehospital, difficult airway simulation. Prehospital and Disaster Medicine, 31, 465–470. 1–6.

    Article  PubMed  Google Scholar 

  • Burckett-St Laurent, D. A., Cunningham, M. S., Abbas, S., Chan, V. W., Okrainec, A., & Niazi, A. U. (2016). Teaching ultrasound guided regional anesthesia remotely: A feasibility study. Acta Anaesthesiologica Scandinavica, 60, 995–1002.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, M., Fitzpatrick, R., Haines, A., et al. (2000). Framework for design and evaluation of complex interventions to improve health. BMJ, 321, 694Y696.

    Google Scholar 

  • Casey, M. M., Wholey, D., & Moscovice, I. S. (2008). Rural emergency department staffing and participation in emergency certification and training programs. The Journal of Rural Health, 24(3), 253–262.

    Article  PubMed  Google Scholar 

  • Cheng, A., Eppich, W., Grant, V., Sherbino, J., Zendejas, B., & Cook, D. A. (2014 Jul 1). Debriefing for technology-enhanced simulation: A systematic review and meta-analysis. Medical Education, 48(7), 657–666.

    Article  PubMed  Google Scholar 

  • Choy, I., Fesco, A., Kwong, J., Jackson, T., & Okrainec, A. (2013). Remote evaluation of laparoscopic performance using the global operative assessment of laparoscopic skills. Surgical Endoscopy, 27, 378–383.

    Article  PubMed  Google Scholar 

  • Cook, D. A., Hatala, R., Brydges, R., Zendejas, B., Szostek, J. H., Wang, A. T., Erwin, P. J., & Hamstra, S. J. (2011). Technology-enhanced simulation for health professions education: A systematic review and meta-analysis. Journal of the American Medical Association, 306(9), 978–988.

    CAS  PubMed  Google Scholar 

  • Cordray, D. S., & Pion, G. M. (2006). Treatment strength and integrity: Models and methods. In R. R. Bootzin & P. E. McKnight (Eds.), Strengthening research methodology: Psychological measurement and evaluation (pp. 103–124). Washington, DC: American Psychological Association. xix, 299 pp.

    Chapter  Google Scholar 

  • Cristancho, S. M., Moussa, F., & Dubrowski, A. (2011). A framework-based approach to designing simulation-augmented surgical education and training programs. The American Journal of Surgery, 202(3), 344–351.

    Article  PubMed  Google Scholar 

  • Cristancho, S., Moussa, F., & Dubrowski, A. (2012). Simulation-augmented training program for off-pump coronary artery bypass surgery: Developing and validating performance assessments. Surgery, 151(6), 785–795.

    Article  PubMed  Google Scholar 

  • Dev, S. P., Nascimiento, B., Jr., Simone, C., & Chien, V. (2007). Chest-tube insertion. New England Journal of Medicine, 357(15), e15.

    Article  PubMed  Google Scholar 

  • Dharmar, M., Marcin, J., Romano, P., et al. (2008). Quality of care of children in the emergency department: Association with hospital setting and physician training. The Journal of Pediatrics, 153, 783Y789.

    Article  Google Scholar 

  • Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6, 241–252.

    Article  Google Scholar 

  • Dunne, C., Jewer, J., & Parsons, M. (2018). Application of the Delphi method to refine key components in the iterative development of a mobile tele-simulation unit (MTU) (p. 039). Calgary, AB: Canadian Association of Emergency Physicians Conference. May 2018.

    Google Scholar 

  • Ericsson, K. A. (2008). Deliberate practice and acquisition of expert performance: A general overview. Academic Emergency Medicine, 15, 988–994.

    Article  PubMed  Google Scholar 

  • Franklin, A. E., Burns, P., & Lee, C. S. (2014). Psychometric testing on the NLN student satisfaction and self-confidence in learning, simulation design scale, and educational practices questionnaire using a sample of pre-licensure novice nurses. Nurse Education Today, 34(10), 1298–1304.

    Article  PubMed  Google Scholar 

  • Greene, C. J., Morland, L. A., Durkalski, V. L., & Frueh, B. C. (2008). Noninferiority and equivalence designs: Issues and implications for mental health research. Journal of Traumatic Stress, 21(5), 433–439.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haji, F. A., Da Silva, C., Daigle, D. T., & Dubrowski, A. (2014). From bricks to buildings: Adapting the medical research council framework to develop programs of research in simulation education and training for the health professions. Simulation in Healthcare, 9(4), 249–259.

    Article  PubMed  Google Scholar 

  • Henao, O., Escallon, J., Green, J., et al. (2013). Fundamentals of laparoscopic surgery in Columbia using telesimulation: An effective educational tool for distance learning. Biomédica, 33, 107–114.

    PubMed  Google Scholar 

  • Hunt, E. A., Walker, A. R., Shaffner, D. H., Miller, M. R., & Pronovost, P. J. (2008). Simulation of in-hospital pediatric medical emergencies and cardiopulmonary arrests: Highlighting the importance of the first 5 minutes. Pediatrics, 121(1), e34–e43.

    Article  PubMed  Google Scholar 

  • Hutton, I. A., Kenealy, H., & Wong, C. (2008). Using simulation models to teach junior doctors how to insert chest tubes: A brief and effective teaching module. Internal Medicine Journal, 38(12), 887–891.

    Article  CAS  PubMed  Google Scholar 

  • Ikeyama, T., Shimizu, N., & Ohta, K. (2012). Low-cost and ready-to-go remote-facilitated simulation-based learning. Simulation in Healthcare, 7(1), 35–39.

    Article  PubMed  Google Scholar 

  • Ilgen, J. S., Sherbino, J., & Cook, D. A. (2013). Technology-enhanced Simulation in Emergency Medicine: A Systematic Review and Meta-Analysis. Academic Emergency Medicine., 20(2), 117–127.

    Article  PubMed  Google Scholar 

  • Ireland, S., Gray, T., Farrow, N., Danne, P. D., & Flanagan, B. (2006). Rural mobile simulation-based trauma team training-an innovative educational platform. International Trauma Care, 16, 6–12.

    Google Scholar 

  • Issenberg, S. B., McGaghie, W. C., Petrusa, E. R., Lee Gordon, D., & Scalese, R. J. (2005). Features and uses of high-fidelity medical simulations that lead to effective learning: A BEME systematic review. Medical Teacher, 27(1), 10–28.

    Article  PubMed  Google Scholar 

  • Jewer, J., Dubrowski, A., Hoover, K., Smith, A., & Parsons, M. (2018). Development of a mobile tele-simulation unit prototype for training of rural and remote emergency health care providers. In Proceedings of the 51st Hawaii International Conference on System Sciences.

    Google Scholar 

  • Kock, N. (2005). Media richness or media naturalness? The evolution of our biological communication apparatus and its influence on our behavior toward e-communication tools. IEEE Transactions on Professional Communication, 48(2), 117–130.

    Article  Google Scholar 

  • McCoy, C. E., Sayegh, J., Alrabah, R., & Yarris, L. (2017). Telesimulation: An innovative tool for health professions education. AEM Education, Training, 1, 132–136.

    Article  Google Scholar 

  • McGaghie, W. C., Issenberg, S. B., Petrusa, E. R., & Scalese, R. J. (2010). A critical review of simulation-based medical education research: 2003–2009. Medical Education, 44(1), 50–63.

    Article  PubMed  Google Scholar 

  • Mikrogianakis, A., Kam, A., Silver, S., Bakanisi, B., Henao, O., Okrainec, A., & Azzie, G. (2011). Telesimulation: An innovative and effective tool for teaching novel intraosseous insertion techniques in developing countries. Academic Emergency Medicine, 18(4), 420–427.

    Article  PubMed  Google Scholar 

  • National League for Nursing. (2005). Retrieved from http://www.nln.org/professional-development-programs/research/tools-and-instruments/descriptions-of-available-instruments.

  • Ohta, K., Kurosawa, H., Shiima, Y., Ikeyama, T., Scott, J., Hayes, S., Gould, M., Buchanan, N., Nadkarni, V., & Nishisaki, A. (2017). The effectiveness of remote facilitation in simulation-based pediatric resuscitation training for medical students. Pediatric Emergency Care, 33, 564–569.

    Article  PubMed  Google Scholar 

  • Okrainec, A., Smith, L., & Azzie, G. (2009). Surgical simulation in Africa: The feasibility and impact of a 3-day fundamentals of laparoscopic surgery course. Surgical Endoscopy, 23, 2493–2498.

    Article  PubMed  Google Scholar 

  • Okrainec, A., Henao, O., & Azzie, G. (2010). Telesimulation: An effective method for teaching the fundamentals of laparoscopic surgery in resource-restricted countries. Surgical Endoscopy, 24, 417–422.

    Article  PubMed  Google Scholar 

  • Okrainec, A., Vassiliou, M., Kapoor, A., Pitzul, K., Henao, O., Kaneva, P., Jackson, T., & Ritter, E. M. (2013). Feasibility of remote administration of the Fundamentals of Laparoscopic Surgery (FLS) skills test. Surgery Endoscopy, 27, 4033–4037.

    Article  Google Scholar 

  • Parsons, M., Wadden, K., Pollard, M., Dubrowski, A., & Smith, A. (2016a). P098: Development and evaluation of a mobile simulation lab with acute care telemedicine support. CJEM, 18(S1), S111–S111.

    Google Scholar 

  • Parsons, M., Wadden, K., Pollard, M., Dubrowski, A., & Smith, A. (2016b). Mobile simulation lab with acute care tele-medicine support. In Medical education scholarship forum proceedings (Vol. 3). Available at: Cureus: Archives of Scholarship in Simulation and Educational Techniques-Annual Collections 2016. http://www.cureus.com/posters/1118.

    Google Scholar 

  • Parsons, M., Smith, A., Hoover, K., Jewer, J., Noseworthy, S., Pollard, M., Dunne, C., & Dubrowski, A. (2017a). P100: Iterative prototype development of a mobile tele-simulation unit for remote training: An update. CJEM, 19(S1), S112–S112.

    Article  Google Scholar 

  • Parsons, M., Smith, A., Rogers, P., Hoover, K., Pollard, M., Dubrowski, A. (2017b). Outcomes of prototype development cycle for a mobile simulation lab with acute care telemedicine support – work in progress. 17th international meeting on simulation in healthcare, Orlando, FL.

    Google Scholar 

  • Pena, G., Altree, M., Babidge, W., Field, J., Hewett, P., & Maddern, G. (2015). Mobile Simulation Unit: Taking simulation to the surgical trainee. ANZ Journal of Surgery, 85(5), 339–343.

    Article  PubMed  Google Scholar 

  • Riley, W., Davis, S., Miller, K., Hansen, H., Sainfort, F., & Sweet, R. (2011). Didactic and simulation nontechnical skills team training to improve perinatal patient outcomes in a community hospital. Joint Commission Journal on Quality and Patient Safety, 37(8), 357–364.

    Article  PubMed  Google Scholar 

  • Rogers, F. B., Shackford, S. R., Osler, T. M., et al. (1999). Rural trauma: The challenge for the next decade. The Journal of Trauma, 47, 802–821. https://doi.org/10.1097/00005373-199910000-00038.

    Article  CAS  PubMed  Google Scholar 

  • Rosen, M. A., Hunt, E. A., Pronovost, P. J., Federowicz, M. A., & Weaver, S. J. (2012). In situ simulation in continuing education for the health care professions: A systematic review. The Journal of Continuing Education in the Health Professions, 32, 243–254. https://doi.org/10.1002/chp.21152.

    Article  PubMed  Google Scholar 

  • Roy, K. M., Miller, M. P., Schmidt, K., & Sagy, M. (2011). Pediatric residents experience a significant decline in their response capabilities to simulated life-threatening events as their training frequency in cardiopulmonary resuscitation decreases. Pediatric Critical Care Medicine, 12(3), e141–e144.

    Article  PubMed  Google Scholar 

  • Rudolph, J. W., Simon, R., Raemer, D. B., & Eppich, W. J. (2008). Debriefing as formative assessment: Closing performance gaps in medical education. Academic Emergency Medicine, 15(11), 1010–1016.

    Article  PubMed  Google Scholar 

  • Scott, D. J., & Dunnington, G. L. (2008). The new ACS/APDS skills curriculum: Moving the learning curve out of the operating room. Journal of Gastrointestinal Surgery, 12, 213–221.

    Article  PubMed  Google Scholar 

  • Small, S. D., et al. (1999). Demonstration of high-fidelity simulation team training for emergency medicine. Academic Emergency Medicine, 6, 312–323.

    Article  CAS  PubMed  Google Scholar 

  • Steinemann, S., Berg, B., Skinner, A., et al. (2011). In situ, multidisciplinary, simulation-based teamwork training improves early trauma care. Journal of Surgical Education, 68(6), 472–477.

    Article  PubMed  Google Scholar 

  • Treloar, D., Hawayek, J., Montgomery, J. R., & Russell, W. (2001). Onsite and distance education of emergency medicine personnel with a human patient simulator. Military Medicine, 166, 1003–1006.

    Article  CAS  PubMed  Google Scholar 

  • Ullman, E., Kennedy, M., Di Delupis, F. D., Pisanelli, P., Burbui, A. G., Cussen, M., Galli, L., Pini, R., & Gensini, G. F. (2016). The Tuscan Mobile Simulation Program: A description of a program for the delivery of in situ simulation training. Internal and Emergency Medicine, 11(6), 837–841.

    Article  PubMed  Google Scholar 

  • von Lubitz, D. K., Carrasco, B., Gabbrielli, F., et al. (2003). Transatlantic medical education: Preliminary data on distance based high-fidelity human patient simulation training. Studies in Health Technology and Informatics, 94, 379–385.

    Google Scholar 

  • Weinstock, P. H., Kappus, L. J., Garden, A., & Burns, J. P. (2009). Simulation at the point of care: Reduced-cost, in situ training via a mobile cart. Pediatric Critical Care Medicine, 10(2), 176–181.

    Article  PubMed  Google Scholar 

  • Williams, J. M., Ehrlich, P. F., & Prescott, J. E. (2001). Emergency medical care in rural America. Annals of Emergency Medicine, 38(3), 323–327.

    Article  CAS  PubMed  Google Scholar 

  • Xafis, V., Babidge, W., Field, J., Altree, M., Marlow, N., & Maddern, G. (2013). The efficacy of laparoscopic skills training in a Mobile Simulation Unit compared with a fixed site: A comparative study. Surgical Endoscopy, 27(7), 2606–2612.

    Article  PubMed  Google Scholar 

  • Ziv, A., Wolpe, P. R., Small, S. D., & Glick, S. (2003). Simulation based medical education: An ethical imperative. Academic Medicine, 78, 783–788.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project has been supported by an Ignite RDC grant awarded by the Research and Development Corporation of Newfoundland and Labrador. Thanks to the following organizations at Memorial University of Newfoundland: the Tuckamore Simulation Research Collaborative (TSRC) for research support and advice, the Clinical Learning and Simulation Center (CLSC) for equipment and operational support, and MUN Med 3D for the provision of simulation models. Thank you to the following people for their assistance during this research project: Research Assistants Megan Pollard, Samantha Noseworthy and Sarah Boyd; Tate Skinner (technical support), Joanne Doyle (Emergency Medicine discipline secretary), and Memorial University’s Emergency Medicine Interest Group (EMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Jewer .

Editor information

Editors and Affiliations

Appendices

Appendix A – Aim-FineTune-FollowThrough Approach

figure a

Sample of MCMD to identify the design factors to consider during prototype development of the MTU

figure b

Appendix B – Procedural Skills Questions

  1. 1.

    Name 3 indications for chest tube placement:

  2. 2.

    Name 2 contra-indications to chest tube placement:

  3. 3.

    Name 4 potential complications of chest tube placement:

  4. 4.

    Name 5 essential pieces of equipment for chest tube placement:

  5. 5.

    What is the typical location on the chest wall for placement of a chest tube?

Appendix C – Mean and Standard Deviation of MTU Characteristics

Characteristic

SessionA N = 35

SessionB N = 6

SessionC N = 6 (Remote)

SessionC N = 6 (Face-to-face)

Mann-Whitney U test Session C remote vs. Face-to-face

Design features of MTU

 Well organized

4.00 (0.594)

4.33 (0.516)

4.33 (0.816)

4.83 (0.408)

 

 Good lighting/brightness

3.94 (0.873)

4.50 (0.548)

4.50 (0.548)

4.50 (0.548)

 

 Low noise

4.23 (0.646)

2.67 (1.211)

3.5 (1.378)

4.67 (0.516)

 

 Adequate space

3.89 (0.867)

4.33 (0.516)

4.67 (0.516)

4.67 (0.516)

 

Function of telecommunications

 Camera setup/location

4.17 (1.465)

4.00 (1.095)

4.17 (0.408)

N/A

 

 Audio

4.09 (0.853)

2.83 (1.169)

3.33 (0.816)

N/A

 

Satisfied with MTU

3.90 (0.746)

4.00 (0.632)

4.50 (0.548)

4.5 (0.837)

 

Recommend MTU

4.09 (0.712)

4.67 (0.516)

4.50 (0.548)

4.17 (1.169)

 

Design elements of the training session

Adapted from the NLN Simulation Design Scale (NLN 2005)

Objectives and information

 There is enough information provided before the session to provide direction and encouragement.

 

3.83 (1.169)

3.67 (0.816)

4.17 (1.329)

U = 70, z = 1.158, p = 0.310

 I clearly understood the purpose and objectives of the session.

 

4.17 (0.408)

4.33 (0.516)

4.50 (0.837)

U = 59, z = 0.371, p = 0.770

 The session provided enough information in a clear matter for me to problem-solve the situation.

 

3.83 (0.983)

3.67 (0.816)

4.17 (0.408)

U = 65.5, z = 1.01, p = 0.454

 I learn from the comments made by the teacher before, during, or after the simulation.

 

3.5 (1.049)

4.17 (0.408)

4.17 (0.753)

U = 66.5, z = 0.962, p = 0.415

 The cues are appropriate and geared to promote my understanding.

 

3.67 (1.033)

3.83 (0.408)

4.5 (0.548)

U = 80.5, z = 2.142, p = 0.077

  1. (continued)

Characteristic

SessionA N = 35

SessionB N = 6

SessionC N = 6 (Remote)

SessionC N = 6 (Face-to-face)

Mann-Whitney U test Session C remote vs. Face-to-face

 There is enough information provided to me during the session.

 

3.67 (1.033)

3.83 (0.408)

4.50 (0.548)

U = 80.5, z = 2.142, p = 0.077

Support

 My need for help was recognized.

 

3.67 (0.816)

4.33 (0.516)

4.33 (0.516)

U = 60, z = 0.468, p = 0.721

 I felt supported by the teacher’s assistance during the session.

 

3.83 (0.983)

4.17 (0.753)

4.17 (0.753)

U = 65.5, z = 0.853, p = 0.454

Problem-solving

 Independent problem-solving was facilitated.

 

3.67 (1.033)

3.67 (0.516)

4.33 (0.816)

U = 80, z = 1.922, p = 0.090

Feedback

 Feedback provided was constructive.

 

3.83 (0.753)

3.83 (0.408)

4.00 (0.894)

U = 74, z = 1.459, p = 0.199

 Feedback was provided in a timely manner.

 

3.83 (0.983)

3.83 (0.408)

3.83 (0.753)

U = 74.5, z = 1.551, p = 0.177

 The session allowed me to analyze my own behavior and actions.

 

3.5 (1.049)

4.00 (0.632)

4.33 (0.816)

U = 66.5, z = 0.905, p = 0.415

 There are enough opportunities in the session to find out if I clearly understand the material.

 

3.17 (1.169)

3.50 (0.837)

4.00 (0.632)

U = 71, z = 1.245, p = 0.280

Learning outcomes

Adapted from the NLN Student Satisfaction and Self-Confidence in Learning scales (NLN 2005)

Satisfaction with learning

 The teaching methods used were helpful and effective.

 

4.00 (0.632)

4.83 (0.408)

4.50 (0.548)

U = 42, z = −0.979, p = 0.454

 I enjoyed how the teacher taught the session.

 

3.50 (1.225)

4.67 (0.516)

4.67 (0.516)

U = 47, z = −0.539, p = 0.673

Self-confidence in learning

 I am confident that I am developing the skills and obtaining the knowledge needed to understand this procedure.

 

3.17 (1.169)

4.17 (0.408)

4.33 (0.516)

U = 54.5, z = 0.044, p = 0.965

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jewer, J., Dubrowski, A., Dunne, C., Hoover, K., Smith, A., Parsons, M. (2020). Piloting a Mobile Tele-simulation Unit to Train Rural and Remote Emergency Healthcare Providers. In: Wickramasinghe, N., Bodendorf, F. (eds) Delivering Superior Health and Wellness Management with IoT and Analytics. Healthcare Delivery in the Information Age. Springer, Cham. https://doi.org/10.1007/978-3-030-17347-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17347-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17346-3

  • Online ISBN: 978-3-030-17347-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics