Skip to main content

Complexity of an Identification Problem of Sharp Local Density Loss in Fractional Body

  • Conference paper
  • First Online:
Advances in Non-Integer Order Calculus and Its Applications (RRNR 2018)

Abstract

In this paper the complexity of identification of sharp local density loss in the framework of the space-fractional continuum mechanics (s-FCM) is presented. The linear dynamic solution in the form of eigenproblem is chosen as a main factor in the objective function - both eigenvalues and eigenmodes are considered. It is shown that the solution space is extremely complicated and densely covered with local minima. The obtained results aim in the classification of the problem hardness versus s-FCM fundamental parameters, namely fractional body order and length scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aifantis, E.C.: On the microstructural origin of certain inelastic models. J. Eng. Mater. Technol. (ASME) 106(4), 326–330 (1984)

    Article  Google Scholar 

  2. Bachmann, P.: Die Analytische Zahlentheorie. B.G. Teubner, Leipzig (1894). zahlentheorie, band 2 edition

    MATH  Google Scholar 

  3. Borenstein, T., Poli, R.: Information landscapes and problem hardness. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, GECCO 2005, pp. 1425–1431. ACM Press (2005)

    Google Scholar 

  4. Cosserat, E., Cosserat, F.: Theorie des corps deformables. Librairie Scientifique A. Hermann et Fils, Paris (1909)

    MATH  Google Scholar 

  5. Davidor, Y.: Epistasis variance: a viewpoint on GA-hardness. In: Rawlins, G.J.E. (ed.) FOGA, pp. 23–35. Morgan Kaufmann, Burlington (1990)

    Google Scholar 

  6. Eringen, A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  7. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocations and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  8. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2010)

    MATH  Google Scholar 

  9. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  10. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Eshelman, L.J. (ed.) ICGA, pp. 184–192. Morgan Kaufmann (1995)

    Google Scholar 

  11. Lazopoulos, A.K.: On fractional peridynamic deformations. Arch. Appl. Mech. 86(12), 1987–1994 (2016)

    Article  Google Scholar 

  12. Lazopoulos, K.A., Lazopoulos, A.K.: Fractional vector calculus and fluid mechanics. J. Mech. Behav. Mater. 26(1–2), 43–54 (2017)

    Google Scholar 

  13. Lazopoulos, K.A., Lazopoulos, A.K.: On fractional bending of beams. Arch. Appl. Mech. 86(6), 1133–1145 (2016)

    Article  Google Scholar 

  14. Leszczyński, J.S.: An Introduction to Fractional Mechanics. Monographs No. 198. The Publishing Office of Czestochowa University of Technology (2011)

    Google Scholar 

  15. Malan, K.M., Engelbrecht, A.P.: Quantifying ruggedness of continuous landscapes using entropy. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, CEC 2009, Piscataway, NJ, USA, pp. 1440–1447. IEEE Press (2009)

    Google Scholar 

  16. Malinowska, A.B., Odzijewicz, T., Torres, D.F.M.: Advanced Methods in the Fractional Calculus of Variations. SpringerBriefs in Applied Sciences and Technology. Springer, Cham (2015)

    Book  Google Scholar 

  17. Manderick, B., de Weger, M.K., Spiessens, P.: The genetic algorithm and the structure of the fitness landscape. In: Belew, R.K., Booker, L.B. (eds.) ICGA, pp. 143–150. Morgan Kaufmann (1991)

    Google Scholar 

  18. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  Google Scholar 

  19. Nowacki, W.: Theory of Micropolar Elasticity. CISM, Udine (1972)

    MATH  Google Scholar 

  20. Odibat, Z.: Approximations of fractional integrals and \(\rm C\)aputo fractional derivatives. Appl. Math. Comput. 178, 527–533 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Oprzedkiewicz, K., Gawin, E., Mitkowski, W.: Modeling heat distribution with the use of a non-integer order, state space model. Int. J. Appl. Math. Comput. Sci. 26(4), 749–756 (2016)

    Article  MathSciNet  Google Scholar 

  22. Oskouie, M.F., Ansari, R., Rouhi, H.: Bending analysis of functionally graded nanobeams based on the fractional nonlocal continuum theory by the variational Legendre spectral collocation method. Meccanica 53(4), 1115–1130 (2018)

    Article  MathSciNet  Google Scholar 

  23. Peddieson, J., Buchanan, G.R., McNitt, R.P.: The role of strain gradients in the grain size effect for polycrystals. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  24. Peter, B.: Dynamical systems approach of internal length in fractional calculus. Eng. Trans. 65(1), 209–215 (2017)

    Google Scholar 

  25. Sapora, A., Cornetti, P., Chiaia, B., Lenzi, E.K., Evangelista, L.R.: Nonlocal diffusion in porous media: a spatial fractional approach. J. Eng. Mech. 143(5), 1–7 (2017)

    Article  Google Scholar 

  26. Sumelka, W.: Thermoelasticity in the framework of the fractional continuum mechanics. J. Therm. Stresses 37(6), 678–706 (2014)

    Article  Google Scholar 

  27. Sumelka, W.: Fractional calculus for continuum mechanics - anisotropic non-locality. Bull. Pol. Acad. Sci. Tech. Sci. 64(2), 361–372 (2016)

    Google Scholar 

  28. Sumelka, W.: On fractional non-local bodies with variable length scale. Mech. Res. Commun. 86(Supplement C), 5–10 (2017)

    Article  Google Scholar 

  29. Szajek, K., Sumelka, W.: Identification of mechanical properties of 1D deteriorated non-local bodies. Struct. Multidiscip. Optim. 59(1), 185–200 (2019)

    Article  MathSciNet  Google Scholar 

  30. Tomasz, B.: Analytical and numerical solution of the fractional Euler-Bernoulli beam equation. J. Mech. Mater. Struct. 12(1), 23–34 (2017)

    Article  MathSciNet  Google Scholar 

  31. Toupin, R.A.: Elastic materials with couple-stresses. ARMA 11, 385–414 (1962)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Centre, Poland, under Grant No. 2017/27/B/ST8/00351.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Szajek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szajek, K., Sumelka, W. (2020). Complexity of an Identification Problem of Sharp Local Density Loss in Fractional Body. In: Malinowska, A., Mozyrska, D., Sajewski, Ł. (eds) Advances in Non-Integer Order Calculus and Its Applications. RRNR 2018. Lecture Notes in Electrical Engineering, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-030-17344-9_21

Download citation

Publish with us

Policies and ethics