Skip to main content

Time-Fractional Heat Conduction with Heat Absorption in a Half-Line Domain Due to Boundary Value of the Heat Flux Varying Harmonically in Time

  • Conference paper
  • First Online:
Advances in Non-Integer Order Calculus and Its Applications (RRNR 2018)

Abstract

The time-fractional heat conduction equation with heat absorption is considered in a half-line domain under the mathematical and physical Neumann boundary conditions varying harmonically in time. The Caputo derivative is employed. The Laplace transform with respect to time and the cos-Fourier transform with respect to the spatial coordinate are used. The solutions are obtained in terms of integrals with integrands being the Mittag-Leffler functions. The numerical results are illustrated graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1972)

    MATH  Google Scholar 

  2. Abuteen, E., Freihat, A., Al-Smadi, M., Khalil, H., Khan, R.A.: Approximate series solution of nonlinear, fractional Klein-Gordon equations using fractional reduced differential transform method. J. Math. Stat. 12, 23–33 (2016). https://doi.org/10.3844/jmssp.2016.23.33

    Article  Google Scholar 

  3. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Oxford University Press, Oxford (1959)

    MATH  Google Scholar 

  4. Cui, Z., Chen, G., Zhang, R.: Analytical solution for the time-fractional Pennes bioheat transfer equation on skin tissue. Adv. Mater. Res. 1049–1050, 1471–1474 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1049-1050.1471

    Article  Google Scholar 

  5. Crank, J.: The Mathematics of Diffusion, 2nd edn. Clarendon Press, Oxford (1975)

    MATH  Google Scholar 

  6. Damor, R.S., Kumar, S., Shukla, A.K.: Solution of fractional bioheat equation in terms of Fox’s H-function. SpringerPlus 111, 1–10 (2016). https://doi.org/10.1186/s40064-016-1743-2

    Article  Google Scholar 

  7. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Tables of Integral Transforms, vol. 1. McGraw-Hill, New York (1954)

    MATH  Google Scholar 

  8. Ezzat, M.A., AlSowayan, N.S., Al-Muhiameed, Z.I.A., Ezzat, S.M.: Fractional modeling of Pennes’ bioheat transfer equation. Heat Mass Transf. 50, 907–914 (2014). https://doi.org/10.1007/s00231-014-1300-x

    Article  Google Scholar 

  9. Ferrás, L.L., Ford, N.J., Morgado, M.L., Nóbrega, J.M., Rebelo, M.S.: Fractional Pennes’ bioheat equation: theoretical and numerical studies. Fract. Calc. Appl. Anal. 18, 1080–1106 (2015). https://doi.org/10.1515/fca-2015-0062

    Article  MathSciNet  MATH  Google Scholar 

  10. Gabbiani, F., Cox, S.J.: Mathematics for Neuroscientists, 2nd edn. Academic Press, Amsterdam (2017)

    MATH  Google Scholar 

  11. Gafiychuk, V.V., Lubashevsky, I.A., Datsko, B.Y.: Fast heat propagation in living tissue caused by branching artery network. Phys. Rev. E 72, 051920 (2005). https://doi.org/10.1103/PhysRevE.72.051920

    Article  Google Scholar 

  12. Golmankhaneh, A.K., Golmankhaneh, A.K., Baleanu, D.: On nolinear fractional Klein-Gordon equation. Sig. Process. 91, 446–451 (2011). https://doi.org/10.1016/j.sigpro.2010.04.016

    Article  MATH  Google Scholar 

  13. Gorenflo, R., Mainardi, F.: Fractional calculus: integral and differential equations of fractional order. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics. International Centre for Mechanical Sciences (Courses and Lectures), vol. 378, pp. 223–276. Springer, Wien (1997). https://doi.org/10.1007/978-3-7091-2664-6_5

    Chapter  Google Scholar 

  14. Gravel, P., Gauthier, C.: Classical applications of the Klein-Gordon equation. Am. J. Phys. 79, 447–453 (2011). https://doi.org/10.1119/1.3559500

    Article  Google Scholar 

  15. Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Rational Mech. Anal. 31, 113–126 (1968). https://doi.org/10.1007/BF00281373

    Article  MathSciNet  MATH  Google Scholar 

  16. Holmes, W.R.: Cable equation. In: Jaeger, D., Jung, R. (eds.) Encyclopedia of Computational Neuroscience, pp. 471–482. Springer, New York (2015). https://doi.org/10.1007/978-1-4614-6675-8

  17. Kheiri, H., Shahi, S., Mojaver, A.: Analytical solutions for the fractional Klein-Gordon equation. Comput. Meth. Diff. Equat. 2, 99–114 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  19. Liu, J., Xu, L.X.: Estimation of blood perfusion using phase shift in temperature response to sinusoidal heating the skin surface. IEEE Trans. Biomed. Eng. 46, 1037–1043 (1999). https://doi.org/10.1109/10.784134

    Article  Google Scholar 

  20. Liu, J., Zhou, Y.X., Deng, Z.S.: Sinusoidal heating method to noninvasively measure tissue perfusion. IEEE Trans. Biomed. Eng. 49, 867–877 (2002). https://doi.org/10.1109/TBME.2002.800769

    Article  Google Scholar 

  21. Mainardi, F.: The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 9, 23–28 (1996). https://doi.org/10.1016/0893-9659(96)00089-4

    Article  MathSciNet  MATH  Google Scholar 

  22. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7, 1461–1477 (1996). https://doi.org/10.1016/0960-0779(95)00125-5

    Article  MathSciNet  MATH  Google Scholar 

  23. Mandelis, A.: Diffusion waves and their uses. Phys. Today 53, 29–33 (2000). https://doi.org/10.1063/1.1310118

    Article  Google Scholar 

  24. Mandelis, A.: Diffusion-Wave Fields: Mathematical Methods and Green Functions. Springer, New York (2001)

    Book  Google Scholar 

  25. Monai, H., Omori, T., Okada, M., Inoue, M., Miyakawa, H., Aonishi, T.: An analytic solution of the cable equation predicts frequency preference of a passive shunt-end cylindrical cable in response to extracellular oscillating electric fields. Biophys. J. 98, 524–533 (2010). https://doi.org/10.1016/j.bpj.2009.10.041

    Article  Google Scholar 

  26. Nigmatullin, R.R.: To the theoretical explanation of the universal response. Phys. Stat. Sol. (b) 123, 739–745 (1984). https://doi.org/10.1002/pssb.2221230241

    Article  Google Scholar 

  27. Nigmatullin, R.R.: On the theory of relaxation for systems with “remnant” memory. Phys. Stat. Sol. (b) 124, 389–393 (1984). https://doi.org/10.1002/pssb.2221240142

    Article  Google Scholar 

  28. Nowacki, W.: State of stress in an elastic space due to a source of heat varying harmonically as function of time. Bull. Acad. Polon. Sci. Sér. Sci. Techn. 5, 145–154 (1957)

    Google Scholar 

  29. Nowacki, W.: Thermoelasticity, 2nd edn. PWN-Polish Scientific Publishers, Warsaw and Pergamon Press (1986)

    MATH  Google Scholar 

  30. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, 93–122 (1948). https://doi.org/10.1152/jappl.1948.1.2.93

    Article  Google Scholar 

  31. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  32. Polyanin, A.D.: Handbook of Linear Partial Differential Equations for Engineers and Scientists. Chapman & Hall/CRC, Boca Raton (2002)

    MATH  Google Scholar 

  33. Povstenko, Y.: Fractional heat conduction equation and associated thermal stress. J. Thermal Stresses 28, 83–102 (2005). https://doi.org/10.1080/014957390523741

    Article  MathSciNet  Google Scholar 

  34. Povstenko, Y.: Thermoelasticity that uses fractional heat conduction equation. J. Math. Sci. 162, 296–305 (2009). https://doi.org/10.1007/s10958-009-9636-3

    Article  MathSciNet  Google Scholar 

  35. Povstenko, Y.: Theory of thermoelasticity based on the space-time-fractional heat conduction equation. Phys. Scr. T 136, 014017 (2009). https://doi.org/10.1088/0031-8949/2009/T136/014017

    Article  Google Scholar 

  36. Povstenko, Y.: Non-axisymmetric solutions to time-fractional diffusion-wave equation in an infinite cylinder. Fract. Calc. Appl. Anal. 14, 418–435 (2011). https://doi.org/10.2478/s13540-011-0026-4

    Article  MathSciNet  MATH  Google Scholar 

  37. Povstenko, Y.: Linear Fractional Diffusion-Wave Equation for Scientists and Engineers. Birkhäuser, New York (2015)

    Book  Google Scholar 

  38. Povstenko, Y.: Fractional heat conduction in a space with a source varying harmonically in time and associated thermal stresses. J. Thermal Stresses 39, 1442–1450 (2016). https://doi.org/10.1080/01495739.2016.1209991

    Article  Google Scholar 

  39. Povstenko, Y., Kyrylych, T.: Time-fractional diffusion with mass absorption under harmonic impact. Fract. Calc. Appl. Anal. 21, 118–133 (2018). https://doi.org/10.1515/fca-2018-0008

    Article  MathSciNet  MATH  Google Scholar 

  40. Povstenko, Y., Kyrylych, T.: Time-fractional diffusion with mass absorption in a half-line domain due to boundary value of concentration varying harmonically in time. Entropy 20, 346 (2018). https://doi.org/10.3390/e20050346

    Article  MathSciNet  Google Scholar 

  41. Qin, Y., Wu, K.: Numerical solution of fractional bioheat equation by quadratic spline collocation method. J. Nonlinear Sci. Appl. 9, 5061–5072 (2016). https://doi.org/10.22436/jnsa.009.07.09

    Article  MathSciNet  MATH  Google Scholar 

  42. Shih, T.-C., Yuan, P., Lin, W.-L., Koe, H.S.: Analytical analysis of the Pennes bioheat transfer equation with sinusoidal heat flux condition on skin surface. Med. Eng. Phys. 29, 946–953 (2007)

    Article  Google Scholar 

  43. Vitali, S., Castellani, G., Mainardi, F.: Time fractional cable equation and applications in neurophysiology. Chaos Solitons Fractals 102, 467–472 (2017). https://doi.org/10.1016/j.chaos.2017.04.043

    Article  MathSciNet  MATH  Google Scholar 

  44. Vrentas, J.S., Vrentas, C.M.: Diffusion and Mass Transfer. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  45. Wazwaz, A.-M.: Partial Differential Equations and Solitary Waves Theory. Higher Education Press, Springer, Beijing, Berlin (2009)

    Book  Google Scholar 

  46. Zolfaghari, A., Maerefat, M.: Bioheat transfer. In: dos Santos Bernardes, M.A. (ed.) Developments in Heat Transfer, pp. 153–170. InTech (2011). https://doi.org/10.5772/22616

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Povstenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Povstenko, Y., Kyrylych, T. (2020). Time-Fractional Heat Conduction with Heat Absorption in a Half-Line Domain Due to Boundary Value of the Heat Flux Varying Harmonically in Time. In: Malinowska, A., Mozyrska, D., Sajewski, Ł. (eds) Advances in Non-Integer Order Calculus and Its Applications. RRNR 2018. Lecture Notes in Electrical Engineering, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-030-17344-9_20

Download citation

Publish with us

Policies and ethics