Skip to main content

The Theoretical and Disciplinary Underpinnings of Data–Driven Smart Sustainable Urbanism: An Interdisciplinary and Transdisciplinary Perspective

  • Chapter
  • First Online:
Book cover Big Data Science and Analytics for Smart Sustainable Urbanism

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

Abstract

Interdisciplinarity and transdisciplinarity have become a widespread mantra for research within diverse fields, accompanied by a growing body of academic and scientific publications. The research field of smart sustainable/sustainable smart urbanism is profoundly interdisciplinary and transdisciplinary in nature. It operates out of the understanding that advances in knowledge necessitate pursuing multifaceted questions that can only be resolved from the vantage point of interdisciplinarity and transdisciplinarity. Indeed, related research problems are inherently too complex and dynamic to be addressed by single disciplines. In addition, this field does not have a unitary approach in terms of a uniform set of concepts, theories, and disciplines, as it does not represent a specific direction of research but rather multiple directions. These are analytically quite diverse. Regardless, interdisciplinarity and transdisciplinarity as scholarly perspectives apply, by extension, to any conceptual, theoretical, and/or disciplinary foundations underpinning this field. Such perspectives in this chapter represent a rather topical and organizational approach as justified and determined by the interdisciplinary aid transdisciplinary nature of the research field of smart sustainable urbanism. In this subject, additionally, theories from academic and scientific disciplines constitute a foundation for action—data–driven smart sustainable urbanism and related urban big data development as informed by data science practiced within the fields of urban science and urban informatics, as well as by sustainability science and sustainable development. In light of this, it is of relevance and importance to develop a foundational approach consisting of the relevant concepts, theories, discourses, and academic and scientific disciplines that underpin smart sustainable urbanism as a field for research and practice. With that in regard, this chapter endeavors to systematize this complex field by identifying, distilling, mixing, fusing, and thematically analytically organizing the core dimensions of this foundational approach. The primary intention of setting such approach is to conceptually and analytically relate urban planning and development, sustainable development, and urban science while emphasizing why and the extent to which sustainability and big data computing have particularly become influential in urbanism in modern society. Being interdisciplinary and transdisciplinary in nature, such approach is meant to further highlight that this scholarly character epitomizes the orientation and essence of the research field of smart sustainable urbanism in terms of its pursuit and practice. Moreover, its value lies in fulfilling one primary purpose: to explain the nature, meaning, implications, and challenges pertaining to the multifaceted phenomenon of smart sustainable urbanism. This chapter provides an important lens through which to understand a set of theories that is of high integration, fusion, applicability, and influence potential in relation to smart sustainable urbanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahvenniemi, H., Huovila, A., Pinto–Seppä, I., & Airaksinen, M. (2017). What are the differences between sustainable and smart cities? Cities, 60, 234–245.

    Article  Google Scholar 

  • Al Nuaimi, E., Al Neyadi, H., Nader, M., & Al–Jaroodi, J. (2015). Applications of big data to smart cities. Journal of Internet Services and Applications, 6(25), 1–15.

    Google Scholar 

  • Angelidou, M., Psaltoglou, A., Komninos, N., Kakderi, C., Tsarchopoulos, P., & Panori, A. (2017). Enhancing sustainable urban development through smart city applications. Journal of Science and Technology Policy Management, 1–25.

    Google Scholar 

  • Aseem, I. (2013). Designing urban transformation. New York, London: Routledge.

    Google Scholar 

  • Barlow, M. (2013). The culture of big data. O’Reilly Media, Inc.

    Google Scholar 

  • Batty, M. (2013). The new science of cities. Cambridge: MIT Press.

    Book  Google Scholar 

  • Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., et al. (2012). Smart cities of the future. European Physical Journal, 214, 481–518.

    Google Scholar 

  • Beatley, T. (2000). Green urbanism: Learning from European cities. Washington, DC: Island Press.

    Google Scholar 

  • Blei, D., & Smyth, P. (2017, June). Science and data science. Proceedings of the National Academies of Sciences, 114(33), 8689–8692.

    Google Scholar 

  • Benham-Hutchins, M., & Clancy, T. (2010). Social networks as embedded complex adaptive systems. JONA, 40(9), 352–356.

    Article  Google Scholar 

  • Bergek, A., Jacobsson, S., Carlsson, B., Lindmark, S., & Rickne, A. (2008). Analyzing the functional dynamics of technological innovation systems: A scheme of analysis. Research Policy, 37, 407–429.

    Article  Google Scholar 

  • Bertalanffy, Lv. (1950). An outline of general system theory. The British Journal for the Philosophy of Science, 1, 134–165.

    Article  Google Scholar 

  • Bertalanffy, Lv. (1962). General system theory. A critical review, general systems. In: General system theory (vol. 7, pp. 1–20). Available from: http://www.fsc.yorku.ca/york/istheory/wiki/index.php/General_systems_theory.

  • Bertalanffy, Lv. (1968). General systems theory. New York: George Braziller.

    Google Scholar 

  • Bettencourt, L. M. A. (2014). The uses of big data in cities. Santa Fe, New Mexico: Santa Fe Institute.

    Book  Google Scholar 

  • Bibri, S. E. (2015). The shaping of ambient intelligence and the internet of things: Historico–epistemic, socio-cultural, politico–institutional and eco–environmental dimensions. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Bibri, S. E. (2018a). Smart sustainable cities of the future: The untapped potential of big data analytics and context aware computing for advancing sustainability. Berlin, Germany: Springer.

    Book  Google Scholar 

  • Bibri, S. E. (2018b). The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustainable Cities and Society, 38, 230–253.

    Article  Google Scholar 

  • Bibri, S. E. (2018c). A foundational framework for smart sustainable city development: Theoretical, disciplinary, and discursive dimensions and their synergies. Sustainable Cities and Society, 38, 758–794.

    Article  Google Scholar 

  • Bibri, S. E. (2018d). Backcasting in futures studies: A synthesized scholarly and planning approach to strategic smart sustainable city development. European Journal of Futures Research, pp. 2 of 27.

    Google Scholar 

  • Bibri, S. E. (2019a). On the sustainability of smart cities of the future and related big data applications: An interdisciplinary and transdisciplinary review and synthesis. Journal of Big Data (in press).

    Google Scholar 

  • Bibri, S. E. (2019b). A novel model for smart sustainable city of the future: A scholarly backcasting approach to its analysis, investigation, and development. European Journal of Futures Research (in press).

    Google Scholar 

  • Bibri, S. E., & Krogstie, J. (2016). On the social shaping dimensions of smart sustainable cities: A study in science, technology, and society. Sustainable Cities and Society, 29, 219–246.

    Article  Google Scholar 

  • Bibri, S. E., & Krogstie, J. (2017a). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183–212.

    Article  Google Scholar 

  • Bibri, S. E., & Krogstie, J. (2017b). ICT of the new wave of computing for sustainable urban forms: Their big data and context-aware augmented typologies and design concepts. Sustainable Cities and Society, 32, 449–474.

    Article  Google Scholar 

  • Bibri, S. E., & Krogstie, J. (2017c). The core enabling technologies of big data analytics and context-aware computing for smart sustainable cities: A review and synthesis. Journal of Big Data.

    Google Scholar 

  • Bifulco, F., Tregua, M., Amitrano, C. C., & D’Auria, A. (2016). ICT and sustainability in smart cities management. International Journal of Public Sector Management, 29(2), 132–147.

    Article  Google Scholar 

  • Bijker, W. E. (1995). Of bicycles, bakelites, and bulbs: Toward a theory of socio-technical change. Cambridge, MA: MIT Press.

    Google Scholar 

  • Boeing, G., Church, D., Hubbard, H., Mickens, J., & Rudis, L. (2014). LEED–ND and livability revisited. Berkeley Planning Journal, 27(1), 31–55.

    Article  Google Scholar 

  • Bossel, H. (2004). Systeme, dynamik, simulation: Modellbildung, analyze und simulation komplexer systeme. Norderstedt: Books on Demand.

    Google Scholar 

  • Bourdic, L., Salat, S., & Nowacki, C. (2012). Assessing cities: A new system of cross-scale spatial indicators. Building Research & Information, 40(5), 592–605.

    Article  Google Scholar 

  • Bridge, G. (2009). Urbanism, international encyclopedia of human geography (pp. 106–111). Oxford: Elsevier.

    Book  Google Scholar 

  • Brown, H. S. (2012). Sustainability science needs to include sustainable consumption. Environment: Science and Policy for Sustainable Development, 54(1), 20–25.

    Google Scholar 

  • Campbell, S. (1996). Green cities, growing cities, just cities? Urban planning and the contradictions of sustainable development. Journal of the American Planning Association, 62(3), 296–312.

    Article  Google Scholar 

  • Carlsson, B., Jacobsson, S., Holmen, M., & Rickne, A. (2002). Innovation systems: Analytical and methodological issues. Research Policy, 31, 233–245.

    Article  Google Scholar 

  • Carlsson, B., & Stankiewicz, R. (1991). On the nature, function, and composition of technological systems. Journal of Evolutionary Economics, 1, 93–118.

    Article  Google Scholar 

  • Carlsson-Kanyama, A., Dreborg, K. H., Eenkhorn, B. R., Engström, R., & Falkena, B. (2003). Image of everyday life in the future sustainable city: Experiences of back-casting with stakeholders in five European cities. The Environmental Strategies Research Group (Fms)—report 182, The Royal Institute of Technology, Stockholm, Sweden, 2003. Report available at /react–text www.infra.kth.sereact–text:563.

    Google Scholar 

  • Clark, W. C. (2007). Sustainability science: A room of its own. Proceedings of the National Academy of Sciences of the United States of America, 104, 1737–1738.

    Article  Google Scholar 

  • Clark, W. C., & Dickson, N. M. (2003). Sustainability science: The emerging research program. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8059–8061.

    Article  Google Scholar 

  • Dasgupta, P. (2007). The idea of sustainable development. Sustainability Science, 2(1), 5–11.

    Article  Google Scholar 

  • Davidson, M. (1983). Uncommon sense: The life and thought of Ludwig von Bertalanffy. Los Angeles: J. P. Tarcher Inc.

    Google Scholar 

  • Denning, P. J. (2000). Computer science: The discipline. In: Encyclopedia of computer science.

    Google Scholar 

  • Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., et al. (1989). Computing as a discipline. Communications of the ACM, 32(1), 9–23.

    Article  Google Scholar 

  • de Vries, B. J. M. (2013). Sustainability science. The Netherlands: Cambridge University Press, Universiteit Utrecht.

    Google Scholar 

  • Donoho, D. (2015). “50 Years of Data Science” (PDF). Based on a talk at Tukey Centennial workshop, Princeton, NJ, September 18, 2015.

    Google Scholar 

  • Dreborg, K. H. (1996). Essence of backcasting. Futures, 28(9), 813–828.

    Article  Google Scholar 

  • Eden, A. H. (2007). Three paradigms of computer science. Minds and Machines, 17(2), 135–167.

    Article  Google Scholar 

  • Fan, W., & Bifet, A. (2013). Mining big data: Current status, and forecast to the future. ACM SIGKDD Explorations Newsletter, 14(2), 1–5.

    Article  Google Scholar 

  • Farr, D. (2008). Sustainable urbanism. New York: Wiley.

    Google Scholar 

  • Foster, J. (2001). Education as sustainability. Environmental Education Research, 7(2), 153–165.

    Article  Google Scholar 

  • Foth, M. (2009). Handbook of research on urban informatics: The practice and promise of the real-time city. Hershey, PA: Information Science Reference.

    Book  Google Scholar 

  • Foth, M., & Brynskov, M. (2016). Participatory action research for civic engagement. In E. Gordon & P. Mihailidis (Eds.), Civic media: Technology, design, practice (pp. 563–580). Cambridge, MA: MIT Press. ISBN 978-0-262-03427-2.

    Google Scholar 

  • Foth, M., Choi, J. H., & Satchell, C. (2011). Urban informatics. In Conference on Computer Supported Cooperative Work (CSCW), Hangzhou, China (pp. 1–8).

    Google Scholar 

  • Geels, F. W. (2004). From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory. Research Policy, 33(6–7), 897–920.

    Article  Google Scholar 

  • Geels, F. W. (2005). Technological transitions and system innovations: A co-evolutionary and socio-technical analysis. Cheltenham, UK: Edward Elgar.

    Book  Google Scholar 

  • Gregory, D., Johnston, R., & Pratt, G. (Eds.). (2009). Dictionary of human geography (5th ed.). Hoboken, NJ, USA: Wiley-Blackwell.

    Google Scholar 

  • Handy, S. (1996). Methodologies for exploring the link between urban form and travel behavior. Transportation Research Part D: Transport and Environment, 2(2), 151–165.

    Article  Google Scholar 

  • Harvey, D. (1973/2009). Social justice and the city. London, UK: Edward Arnold.

    Google Scholar 

  • Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., et al. (2016). The role of big data in smart city. International Journal of Information Management, 36, 748–758.

    Article  Google Scholar 

  • Hearn, G., Tacchi, J., Foth, Mus, & Lennie, J. (2009). Action research and new media: Concepts, methods, and cases. Cresskill, NJ: Hampton Press. ISBN 978-1-57273-866-9.

    Google Scholar 

  • Hiremath, R. B., Balachandra, P., Kumar, B., Bansode, S. S., & Murali, J. (2013). Indicator-based urban sustainability—A review. Energy for Sustainable Development, 17, 555–563. https://doi.org/10.1016/j.esd.2013.08.004.

    Article  Google Scholar 

  • Höjer, M., & Wangel, S. (2015). Smart sustainable cities: Definition and challenges. In L. Hilty & B. Aebischer (Eds.), ICT innovations for sustainability (pp. 333–349). Berlin: Springer.

    Chapter  Google Scholar 

  • Holmberg, J. (1998). Backcasting: A natural step in operationalizing sustainable development. Greener Management International (GMI), 23, 30–51.

    Google Scholar 

  • Holmberg, J., & Robèrt, K. H. (2000). Backcasting from non-overlapping sustainability principles: A framework for strategic planning. International Journal of Sustainable Development and World Ecology, 7(4), 291–308.

    Article  Google Scholar 

  • Hyland, K. (2000). Disciplinary discourses: Social interactions in academic writing. London: Longman.

    Google Scholar 

  • Hyland, K., & Bondi, M. (Eds.). (2006). Academic discourse across disciplines. Frankfort: Peter Lang.

    Google Scholar 

  • International Telecommunications Union (ITU). (2014). Agreed definition of a smart sustainable city. In: Focus group on smart sustainable cities, SSC–0146 version Geneva, 5–6 March.

    Google Scholar 

  • Kärrholm, M. (2011). The scaling of sustainable urban form: Some scale-related problems in the context of a Swedish urban landscape. European Planning Studies, 19(1), 97–112.

    Article  Google Scholar 

  • Kates, R., Clark, W., Corell, R., Hall, J., & Jaeger, C. (2001). Sustainability science. Science (Science), 292(5517), 641–642.

    Google Scholar 

  • Khan, Z., Anjum, A., Soomro, K., & Tahir, M. A. (2015). Towards cloud based big data analytics for smart future cities. Journal of Cloud Computing: Advances, Systems and Applications, 4(2).

    Google Scholar 

  • Khan, M., Uddin, M. F., Gupta, N. (2014). Seven V’s of big data understanding: Big data to extract value. In American Society for Engineering Education (ASEE Zone 1), 2014 zone 1 Conference of the IEEE (pp. 1–5).

    Google Scholar 

  • Kieffer, S. W., Barton, P., Palmer, A. R., Reitan, P. H., Zen, E. (2003). Megascale events: Natural disasters and human behavior. The Geological Society of America Abstracts with Programs, 432.

    Google Scholar 

  • Kitchin, R. (2014). The real-time city? Big data and smart urbanism. GeoJournal, 79, 1–14.

    Article  Google Scholar 

  • Kitchin, R. (2015). Data-driven, networked urbanism. https://doi.org/10.2139/ssrn.2641802.

  • Kitchin, R. (2016). The ethics of smart cities and urban science. Philosophical Transactions of the Royal Society A, 374, 20160115.

    Article  Google Scholar 

  • Komiyama, H., & Takeuchi, K. (2006). Sustainability science: Building a new discipline. Sustainability Science, 1, 1–6.

    Article  Google Scholar 

  • Kramers, A., Höjer, M., Lövehagen, N., & Wangel, J. (2014). Smart sustainable cities: Exploring ICT solutions for reduced energy use in cities. Environmental Modelling and Software, 56, 52–62.

    Article  Google Scholar 

  • Kumar, A., & Prakash, A. (2014). The role of big data and analytics in smart cities. International Journal of Science and Research (IJSR), 6(14), 12–23.

    Google Scholar 

  • Konugurthi, P. K., Agarwal, K., Chillarige, R. R., & Buyya, R. (2016). The anatomy of big data computing. Software: Practice and Experience (SPE), 46(1), 79–105.

    Google Scholar 

  • Jabareen, Y. R. (2006). Sustainable urban forms: Their typologies, models, and concepts. Journal of Planning Education and Research, 26, 38–52.

    Article  Google Scholar 

  • Karun, K. A., & Chitharanjan, K. (2013). A review on hadoop—HDFS infrastructure extensions. In: IEEE, information & communication technologies (ICT), pp 132–137.

    Google Scholar 

  • Laney, D. (2001). 3-D data management: Controlling data volume, velocity and variety. META Group Research Note.

    Google Scholar 

  • Larice, M., & MacDonald, E. (Eds.). (2007). The urban design reader. New York, London: Routledge.

    Google Scholar 

  • László, E. (1972). Introduction to systems philosophy: Toward a new paradigm of contemporary thought. Gordon & Breach.

    Google Scholar 

  • Lemke, J. (1995). Textual politics: Discourse and social dynamics. London: Taylor and Francis.

    Google Scholar 

  • Lynch, K. (1981). A theory of good city form. Cambridge, MA: MIT Press.

    Google Scholar 

  • Lytras, M. D., & Visvizi, A. (2018). Who uses smart city services and what to make of them: Toward interdisciplinary smart cities research. Sustainability, 10(10), 1–19.

    Google Scholar 

  • McCarthy, J. (2007). What is artificial intelligence? Computer Science Department, Stanford University, Stanford.

    Google Scholar 

  • Max-Neef, M. A. (2005). Foundations of transdisciplinarity. Ecological Economics, 53(1), 5–16.

    Article  Google Scholar 

  • Miola, A. (2008). Backcasting approach for sustainable mobility. European Commission, Joint Research Center, Institute for Environment and Sustainability.

    Google Scholar 

  • Morinière, L. (2012). Environmentally influenced urbanization: Footprints bound for town? Urban Studies, 49(2), 435–450.

    Article  Google Scholar 

  • M’Pherson, P. (1974). A perspective on systems science and systems philosophy. Futures, 6, 219–239.

    Article  Google Scholar 

  • Nigel, T. (2007). Urban planning theory since 1945. London: Sage.

    Google Scholar 

  • Nielsen, M. (2011). Reinventing discovery: The new era of networked science. Princeton: Princeton University Press.

    Google Scholar 

  • O’Connor, T., & Wong, H. Y. (2012). Emergent properties. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (2012th ed.). Berlin: Springer.

    Google Scholar 

  • Paley, J., & Gail, E. (2011). Complexity theory as an approach to explanation in healthcare: A critical discussion. International Journal of Nursing Studies, 48, 269–279.

    Article  Google Scholar 

  • Phdungsilp, A. (2011). Futures studies’ backcasting method used for strategic sustainable city planning. Futures, 43(7), 707–714.

    Article  Google Scholar 

  • Provost, F., & Fawcett, T. (2013). Data science for business. Sebastopol, CA: O’Reilly Media Inc.

    Google Scholar 

  • Ratti, C., & Offenhuber, D. (2014). Decoding the city: How big data can change urbanism. Basel, Switzerland: Birkhauser Verlag AG.

    Google Scholar 

  • Ratti, C., & Claudel, M. (2016). The city of tomorrow: Sensors, networks, hackers, and the future of urban life. New Haven, CT: Yale University Press.

    Google Scholar 

  • Richmond, B. (1991). Systems thinking: Four key questions. Lyme: High Performance Systems Inc.

    Google Scholar 

  • Reitan, P. (2005). Sustainability science—And what’s needed beyond science. Sustainability: Science, Practice and Policy, 1(1), 77–80.

    Google Scholar 

  • Salat, S., & Bourdic, L. (2012). Systemic resilience of complex urban systems. TeMATrimestrale del Laboratorio Territorio Mobilità e Ambiente–TeMALab, 5(2), 55–68.

    Google Scholar 

  • Satchell, C. (2008). Cultural theory and design: Identifying trends by looking at the action in the periphery. ACM Interactions, 15(6), 23.

    Article  Google Scholar 

  • Senge, P. M. (1990). The fifth discipline: The art & practice of the learning organization. New York: Doubleday Business.

    Google Scholar 

  • Sharifi, A. (2016). From Garden City to Eco-urbanism: The quest for sustainable neighborhood development. Sustainable Cities and Society, 20, 1–16.

    Article  Google Scholar 

  • Shepard, M. (Ed.). (2011). Sentient city: Ubiquitous computing, architecture, and the future of urban space. Cambridge, MA: MIT Press.

    Google Scholar 

  • Singh, J., & Singla, V. (2015). Big data: Tools and technologies in big data. International Journal of Computer Applications (0975–8887) 112(15).

    Google Scholar 

  • Thrift, N. (2014). The promise of urban informatics: Some speculations. Environment and Planning A, 46(6), 1263–1266.

    Article  Google Scholar 

  • Townsend, A. (2013). Smart cities—Big data, civic hackers and the quest for a new utopia. New York: Norton & Company.

    Google Scholar 

  • United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. New York, NY. Available at: https://sustainabledevelopment.un.org/post2015/transformingourworld.

  • Unsworth, K., Forte, A., & Dilworth, R. (Eds.). (2014). Urban informatics: The role of citizen participation in policy making. Special issue of the Journal of Urban Technology, 21(4).

    Google Scholar 

  • Van Assche, K., Beunen, R., Duineveld, M., & de Jong, H. (2013). Co-evolutions of planning and design: Risks and benefits of design perspectives in planning systems. Plan Theory, 12(2), 177–198.

    Article  Google Scholar 

  • Van Bueren, E., van Bohemen, H., Itard, L., & Visscher, H. (2011). Sustainable Urban Environments: An ecosystem approach. Springer International Publishing.

    Google Scholar 

  • Van der Ryn, S., & Cowan, S. (1996). Ecological design. Island Press.

    Google Scholar 

  • Warleigh-Lack, A. (2011). Greening the European Union for legitimacy? A cautionary reading of Europe 2020. Innovation: The European Journal of Social Science Research, 23, 297–311.

    Google Scholar 

  • Wegner, P. (1976). Research paradigms in computer science. In: Proceedings of the 2nd International Conference on Software Engineering. Los Alamitos, San Francisco, CA, United States: IEEE Computer Society Press.

    Google Scholar 

  • Wheeler, S. M., & Beatley, T. (Eds.). (2010). The sustainable urban development reader. London, New York: Routledge.

    Google Scholar 

  • Williams, K. (2009). Sustainable cities: Research and practice challenges. International Journal of Urban Sustainable Development, 1(1), 128–132.

    Google Scholar 

  • Williams, K., Burton, E., & Jenks, M. (Eds.). (2000). Achieving sustainable urban form. London: E & FN Spon.

    Google Scholar 

  • World Commission on Environment and Development (WCED). (1987). Our common future (The Brundtland report). Oxford/New York: Oxford University Press.

    Google Scholar 

  • Wirth, L. (1938). Urbanism as a way of life. American Journal of Sociology, 44(1), 1–24.

    Article  Google Scholar 

  • Yaneer, B.-Y. (2002). General features of complex systems. In Encyclopedia of life support systems. Oxford, UK: EOLSS UNESCO Publishers.

    Google Scholar 

  • Zheng, Y., Capra, L., Wolfson, O., & Yang, H. (2014). Urban computing: Concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology, 5(3), 1–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Elias Bibri .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bibri, S.E. (2019). The Theoretical and Disciplinary Underpinnings of Data–Driven Smart Sustainable Urbanism: An Interdisciplinary and Transdisciplinary Perspective. In: Big Data Science and Analytics for Smart Sustainable Urbanism. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-17312-8_3

Download citation

Publish with us

Policies and ethics