Skip to main content

Metastable Regimes and Tipping Points of Biochemical Networks with Potential Applications in Precision Medicine

  • Chapter
  • First Online:
Automated Reasoning for Systems Biology and Medicine

Abstract

The concept of attractor of dynamic biochemical networks has been used to explain cell types and cell alterations in health and disease. We have recently proposed an extension of the notion of attractor to take into account metastable regimes, defined as long-lived dynamical states of the network. These regimes correspond to slow dynamics on low- dimensional invariant manifolds of the biochemical networks. Methods based on tropical geometry allow to compute the metastable regimes and represent them as polyhedra in the space of logarithms of the species concentrations. We are looking for sensitive parameters and tipping points of the networks by analyzing how these polyhedra depend on the model parameters. Using the coupled MAPK and PI3K/Akt signaling networks as an example, we test the idea that large changes of the metastable states can be associated with cancer-specific alterations of the network. In particular, we show that for model parameters representing protein concentrations, the protein differential level between tumors of different types is reasonably reflected in the sensitivity scores, with sensitive parameters corresponding to differential proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal CC, Hinneburg A, Keim DA (2001) On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche J, Vianu V (eds) Database theory—ICDT 2001. Springer, Heidelberg, pp 420–434

    Chapter  Google Scholar 

  2. Atias N, Istrail S, Sharan R (2013) Pathway-based analysis of genomic variation data. Curr Opin Genet Dev 23(6):622–626

    Article  Google Scholar 

  3. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. Ser B (Methodological) 57(1):289–300

    MathSciNet  MATH  Google Scholar 

  4. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372(9):793–795

    Article  Google Scholar 

  5. CPTAC data portal. https://cptac-data-portal.georgetown.edu/cptac/documents/CDAP_ProteinReports_description_20160503.pdf

  6. CPTAC data portal. https://cptac-data-portal.georgetown.edu/cptac/documents/CDAP_Results_Overview_rev_09152014.pdf

  7. CPTAC data portal. https://proteomics.cancer.gov/data-portal

  8. Dawei H, Yuan J-M (2006) Time-dependent sensitivity analysis of biological networks: coupled MAPK and PI3K signal transduction pathways. J Phys Chem A 110(16):5361–5370

    Article  Google Scholar 

  9. Dowell RD, Ryan O, Jansen A, Cheung D, Agarwala S, Danford T, Bernstein DA, Rolfe PA, Heisler LE, Chin B et al (2010) Genotype to phenotype: a complex problem. Science 328(5977):469

    Article  Google Scholar 

  10. Drost H-G (2018) Philentropy: similarity and distance quantification between probability functions. R package version 0.1.0

    Google Scholar 

  11. Fritsche-Guenther R, Witzel F, Sieber A, Herr R, Schmidt N, Braun S, Brummer T, Sers C, Blüthgen N (2011) Strong negative feedback from Erk to Raf confers robustness to MAPK signalling. Mol Syst Biol 7(1):489

    Article  Google Scholar 

  12. Goldbeter A, Koshland DE (1984) Ultrasensitivity in biochemical systems controlled by covalent modification interplay between zero-order and multistep effects. J Biol Chem 259(23):14441–14447

    Google Scholar 

  13. Grieco L, Calzone L, Bernard-Pierrot I, Radvanyi F, Kahn-Perles B, Thieffry D (2013) Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput Biol 9(10):e1003286

    Article  Google Scholar 

  14. Hatakeyama M, Kimura S, Naka T, Kawasaki T, Yumoto N, Ichikawa M, Kim J-H, Saito K, Saeki M, Shirouzu M et al (2003) A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling. Biochem J 373(Pt 2):451

    Article  Google Scholar 

  15. Hollander M, Wolfe DA (1999) Nonparametric statistical methods

    Google Scholar 

  16. Klinger B, Sieber A, Fritsche-Guenther R, Witzel F, Berry L, Schumacher D, Yan Y, Durek P, Merchant M, Schäfer R et al (2013) Network quantification of EGFR signaling unveils potential for targeted combination therapy. Mol Syst Biol 9(1):673

    Article  Google Scholar 

  17. LaValle SM (2006) Planning algorithms. Cambridge University Press, New York

    Google Scholar 

  18. Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, Harish Dharuri L, Li HS, Schilstra M, Shapiro B, Snoep JL, Hucka M (2006) BioModels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucl Acids Res 34(suppl 1):D689–D691

    Article  Google Scholar 

  19. Li J, Lu Y, Akbani R, Ju Z, Roebuck PL, Liu W, Yang J-Y, Broom BM, Verhaak RGW, Kane DW et al (2013) TCPA: a resource for cancer functional proteomics data. Nat Methods 10(11):1046

    Article  Google Scholar 

  20. Limma page on bioconductor. https://bioconductor.org/packages/release/bioc/html/limma.html

  21. Lüders C PtCut: Calculate tropical equilibrations and prevarieties. http://www.wrogn.com/ptcut/

  22. Noel V, Grigoriev D, Vakulenko S, Radulescu O (2012) Tropical geometries and dynamics of biochemical networks application to hybrid cell cycle models. Electron Notes Theor Comput Sci 284:75–91

    Article  MathSciNet  Google Scholar 

  23. Obuchowski NA (2003) Receiver operating characteristic curves and their use in radiology. Radiology 229(1):3–8 PMID: 14519861

    Article  MathSciNet  Google Scholar 

  24. Radulescu O, Vakulenko S, Grigoriev D (2015) Model reduction of biochemical reactions networks by tropical analysis methods. Math Model Nat Phenom 10(3):124–138

    Article  MathSciNet  Google Scholar 

  25. Radulescu O, Samal SS, Naldi A, Grigoriev D, Weber A (2015) Symbolic dynamics of biochemical pathways as finite states machines. In: International conference on computational methods in systems biology. Springer, Berlin, pp 104–120

    Chapter  Google Scholar 

  26. Rizk A, Batt G, Fages F, Soliman S (2009) A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics 25(12):i169–i178

    Article  Google Scholar 

  27. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M (2011) pROC: an open-source package for R and S\(+\) to analyze and compare ROC curves. BMC Bioinform 12:77

    Google Scholar 

  28. Rutherford SL (2000) From genotype to phenotype: buffering mechanisms and the storage of genetic information. Bioessays 22(12):1095–1105

    Article  Google Scholar 

  29. Samal SS, Grigoriev D, Fröhlich H, Radulescu O (2015) Analysis of reaction network systems using tropical geometry. In: Gerdt VP, Koepf W, Seiler WM, Vorozhtsov EV (eds) Computer algebra in scientific computing – 17th international workshop (CASC 2015), vol 9301. Lecture notes in computer science. Springer, Aachen, pp 422–437

    Chapter  Google Scholar 

  30. Samal SS, Grigoriev D, Fröhlich H, Weber A, Radulescu O (2015) A geometric method for model reduction of biochemical networks with polynomial rate functions. Bull Math Biol 77(12):2180–2211

    Article  MathSciNet  Google Scholar 

  31. Samal SS, Naldi A, Grigoriev D, Weber A, Théret N, Radulescu O (2016) Geometric analysis of pathways dynamics: application to versatility of TGF-\(\beta \) receptors. Biosystems 149:3–14

    Article  Google Scholar 

  32. Sos ML, Fischer S, Ullrich R, Peifer M, Heuckmann JM, Koker M, Heynck S, Stückrath I, Weiss J, Fischer F et al (2009) Identifying genotype-dependent efficacy of single and combined PI3K-and MAPK-pathway inhibition in cancer. Proc Natl Acad Scie 106(43):18351–18356

    Article  Google Scholar 

  33. Strohman R (2002) Maneuvering in the complex path from genotype to phenotype. Science 296(5568):701–703

    Article  Google Scholar 

  34. TCGA data portal. https://cancergenome.nih.gov/abouttcga

  35. TCPA data portal. http://bioinformatics.mdanderson.org/main/TCPA:Overview

  36. Yoon J, Deisboeck TS (2009) Investigating differential dynamics of the MAPK signaling cascade using a multi-parametric global sensitivity analysis. PloS One 4(2):e4560

    Article  Google Scholar 

  37. Zi Z (2011) Sensitivity analysis approaches applied to systems biology models. IET Syst Biol 5(6):336–346

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the ANR/DFG grant ANR-17-CE40-0036 (project SYMBIONT) and CompSE profile area, RWTH Aachen University. We thank R. Larive and D. Santamaria for their critical reading of the manuscript and for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ovidiu Radulescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samal, S.S., Krishnan, J., Esfahani, A.H., Lüders, C., Weber, A., Radulescu, O. (2019). Metastable Regimes and Tipping Points of Biochemical Networks with Potential Applications in Precision Medicine. In: Liò, P., Zuliani, P. (eds) Automated Reasoning for Systems Biology and Medicine. Computational Biology, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-17297-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17297-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17296-1

  • Online ISBN: 978-3-030-17297-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics