Advertisement

Solar Desiccant (Absorption/Adsorption) Cooling/Dehumidification Technologies

  • Wansheng YangEmail author
  • Shuli Liu
  • Xiaoqiang Zhai
  • Yin Bi
  • Zhangyuan Wang
  • Xudong Zhao
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

Air dehumidification in humid climates can improve the people’s living environment to promote the life quality and improve working environment significantly to increase production rate and product quality. Desiccants are key materials used in the dehumidification technologies. In this chapter, the conventional solid desiccant materials and different types of desiccant systems are introduced. Furthermore, the performance of solid dehumidification materials is emphatically analysed. In addition, desiccant regeneration methods are summarized, and two examples of their applications are presented in the last part of the chapter, namely the novel solar solid. dehumidification/regeneration bed and solar-powered dehumidification window. This chapter would be helpful for researchers and engineers in this area to exploit the potential applications of solar desiccant technologies in building sector.

Keywords

Air dehumidification Solid desiccant Regeneration methods Solar technologies 

References

  1. 1.
    Shenzhen Institute of Building Research Co., Ltd. (2016) Design of green buildings in South China and related cases. China Architecture & Building Press, ShenzhenGoogle Scholar
  2. 2.
    Zhang T, Liu X, Zhao K et al (2010) Application analysis of air conditioning system with independent temperature and humidity control. Build Sci 26(10):146–150Google Scholar
  3. 3.
    Zhu D, Ju F, Li X et al (2007) Research progress in dehumidifiers. Heat Vent Air Cond 04:35–40+23Google Scholar
  4. 4.
    Guo N (2016) Experimental study of solid dehumidification and purification systems of endogenous air. Inner Mongolia University of Science & Technology, Inner MongoliaGoogle Scholar
  5. 5.
    Liu X, Jiang Y, Zhang T (2013) Temperature and humidity independent control of air-conditioning systems, vol 2. China Architecture & Building Press, BeijingCrossRefGoogle Scholar
  6. 6.
    Yeboah SK, Darkwa J (2016) A critical review of thermal enhancement of packed beds for water vapor adsorption. Renew Sustain Energy Rev 58:1500–1520CrossRefGoogle Scholar
  7. 7.
    Misha S, Mat S, Ruslan MH et al (2012) Review of solid/liquid desiccant in the drying applications and its regeneration methods. Renew Sustain Energy Rev 16(7):4686–4707CrossRefGoogle Scholar
  8. 8.
    Hamed AM (2003) Desorption characteristic of desiccant bed for solar dehumidification/humidification air conditioning systems. Renewable Energy 28(13):2099–2111CrossRefGoogle Scholar
  9. 9.
    Yadav A, Bajpai VK (2012) Experimental comparison of various solid desiccants for regeneration by evacuated solar air collector and air dehumidification. Dry Technol 30(5):516–525CrossRefGoogle Scholar
  10. 10.
    Tu R, Liu XH, Jiang Y (2014) Performance analysis of a two-stage desiccant cooling system. Appl Energy 113:1562–1574CrossRefGoogle Scholar
  11. 11.
    Xue D (1997) Air conditioning. Tsinghua University Press, BeijingGoogle Scholar
  12. 12.
    Brundrett GW (1987) Handbook of dehumidification technology. Butterworths, LondonGoogle Scholar
  13. 13.
    Zhao L (2014) Research and optimization on performance of low-temperature adsorption desiccant material. Shandong University, ShandongGoogle Scholar
  14. 14.
    Fang Y, Jiang G (2005) Review on adsorbent materials of rotary-type dehumidifier. Chem Ind Eng Prog 24(10):1131–1135Google Scholar
  15. 15.
    Yu X, Wang S, Jiang W et al (2011) Synthesis and characterization of molecular sieve SAPO-5. J Jilin Inst Chem Technol 11:4–7Google Scholar
  16. 16.
    Liu X, Li Y, Feng C (2012) Preparation, characterization and photocatalytic activities of polyoxometalates immobilized on mesoporous molecular sieve. Spectrosc Spectr Anal 4:1020–1023Google Scholar
  17. 17.
    Yu C, Wei C (2011) Preparation and application of polymer mesocomposites. Mater Rev 5:60–63Google Scholar
  18. 18.
    Karamanis D, Vardoulakis E (2012) Application of zeolitic materials prepared from fly ash to water vapor adsorption for solar cooling. Appl Energy 97:334–339CrossRefGoogle Scholar
  19. 19.
    Kubota M, Hanada T, Yabe S et al (2011) Water desorption behavior of desiccant rotor under microwave irradiation. Appl Therm Eng 31(8–9):1482–1486CrossRefGoogle Scholar
  20. 20.
    Kubota M, Hanada T, Yabe S et al (2013) Regeneration characteristics of desiccant rotor with microwave and hot-air heating. Appl Therm Eng 50(2):1576–1581CrossRefGoogle Scholar
  21. 21.
    Kodama A (2010) Cross-contamination test of an enthalpy wheel loading a strong acidic cation ion-exchange resin or 3A zeolite as a desiccant material. J Chem Eng Jpn 43(1):901–905CrossRefGoogle Scholar
  22. 22.
    Li Y (2014) Study on dehumidification and regeneration characteristics of porous media. Inner Mongolia University of Science & Technology, Inner MongoliaGoogle Scholar
  23. 23.
    Kumar SR, Pillai PK, Warrier KGK (1998) Synthesis of high surface area silica by solvent exchange in alkoxy derived silica gels. Polyhedron 17(10):1699–1703CrossRefGoogle Scholar
  24. 24.
    Chung TW, Yeh TS, Yang TCK (2001) Influence of manufacturing variables on surface properties and dynamic adsorption properties of silica gels. J Non-Cryst Solids 279(2):145–153CrossRefGoogle Scholar
  25. 25.
    Guo J (2011) Study on dehumidification performance of modified silica gel/molecular sieve complex. South China University of Technology, GuangzhouGoogle Scholar
  26. 26.
    Li X (2011) Study on the dehumidification enhancement of desiccant-coated heat exchanger. Shanghai Jiao Tong University, ShanghaiGoogle Scholar
  27. 27.
    Zheng Y, Yuan W, Wang H et al (2006) Experiments on dynamic dehumidification of internally cooling compact solid dehumidifier. J Beijing Univ Aeronaut Astronaut 32(9):1100–1103Google Scholar
  28. 28.
    Yuan W, Yi Z, Liu X et al (2008) Study of a new modified cross-cooled compact solid desiccant dehumidifier. Appl Therm Eng 28(17):2257–2266Google Scholar
  29. 29.
    Peng Z, Dai Y (2011) Transient dehumidification performance of a novel regenerative desiccant heat exchanger. Acta Energiae Solaris Sinica 32:530–536Google Scholar
  30. 30.
    Ge TS, Dai YJ, Wang RZ et al (2010) Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers. Energy 35(7):2893–2900CrossRefGoogle Scholar
  31. 31.
    Ge TS, Dai YJ, Wang RZ (2011) Performance study of silica gel coated fin-tube heat exchanger cooling system based on a developed mathematical model. Energy Convers Manag 52(6):2329–2338CrossRefGoogle Scholar
  32. 32.
    Kabeel AE (2009) Adsorption-desorption operations of multilayer desiccant packed bed for dehumidification applications. Renew Energy 34(1):255–265CrossRefGoogle Scholar
  33. 33.
    Song W, Li W, Ge Y et al (2014) Experimental study on fixed bed structure for solid adsorption dehumidification. Build Energy Effic 08:21–24Google Scholar
  34. 34.
    Ramzy A, Abdelmeguid H, Elawady WM (2015) A novel approach for enhancing the utilization of solid desiccants in packed bed via intercooling. Appl Therm Eng 78(78):82–89CrossRefGoogle Scholar
  35. 35.
    Pesaran AA, Mills AF (1987) Moisture transport in silica gel packed beds—II. Experimental study. Int J Heat Mass Transf 30(6):1051–1060zbMATHCrossRefGoogle Scholar
  36. 36.
    Ramzy KA, Kadoli R, Babu TPA (2014) Significance of axial heat conduction in non-isothermal adsorption process in a desiccant packed bed. Int J Therm Sci 76(2):68–81CrossRefGoogle Scholar
  37. 37.
    Ramzy AK, Kadoli R, Ashok BTP (2013) Experimental and theoretical investigations on the cyclic operation of TSA cycle for air dehumidification using packed beds of silica gel particles. Energy 56(5):8–24CrossRefGoogle Scholar
  38. 38.
    Mitra S, Aswin N, Dutta P (2016) Scaling analysis and numerical studies on water vapour adsorption in a columnar porous silica gel bed. Int J Heat Mass Transf 95:853–864CrossRefGoogle Scholar
  39. 39.
    Ge Y, Li W, Chen L et al (2012) Experimental study on fixed bed structure for solid adsorption dehumidification. Build Sci 12:80–84Google Scholar
  40. 40.
    Feng S, Chen Z, Tang G et al (2001) Test and studying on honeycomb passage silica gel moisture trap. Contam Control Air-Cond Technol 01:21–24Google Scholar
  41. 41.
    Worek WM, Lavan Z (1982) Performance of a cross-cooled desiccant dehumidifier prototype. J SolEnergy Eng 104(3):187–196Google Scholar
  42. 42.
    Fathalah K, Aly SE (1996) Study of a waste heat driven modified packed desiccant bed dehumidifier. Energy Convers Manag 37(4):457–471CrossRefGoogle Scholar
  43. 43.
    Zhao Y, Dai YJ, Ge TS et al (2015) On heat and moisture transfer characteristics of a desiccant dehumidification unit using fin tube heat exchanger with silica gel coating. Appl Therm Eng 91:308–317CrossRefGoogle Scholar
  44. 44.
    Zhou H, Qian M, Feng J, Sun L (2010) Building materials thermal physics performance and data manual. China Construction Industry Press, BeijingGoogle Scholar
  45. 45.
    Bi Y, Yang W, Zhao X (2018) Numerical investigation of a solar/waste energy driven sorption/desorption cycle employing a novel adsorbent bed. EnergyGoogle Scholar
  46. 46.
    Collins RE (1984) Flow of fluids through porous materials. Petroleum Industry Press, BeijingGoogle Scholar
  47. 47.
    Cheng W, Wei W (2007) Theoretical analysis of phase change material storage with porosity metal foams. Acta Energiae Solaris Sinica 28(7):739–744Google Scholar
  48. 48.
    Wang B, Wang R (1983) Thermal conductivity of moisture-containing building materials. J Eng Thermophys 4(2):146–152Google Scholar
  49. 49.
    Chen H, Li T, Wang L et al (2009) Sorption performance of consolidated composite sorbent used in solar-powered sorption air-conditioning system. J Chem Ind Eng Soc ChinaGoogle Scholar
  50. 50.
    Zhao Y, Dai YJ, Ge TS et al (2016) A high-performance desiccant dehumidification unit using solid desiccant coated heat exchanger with heat recovery. Energy Build 116:583–592CrossRefGoogle Scholar
  51. 51.
    Zaltash A, Petrov AY, Rizy DT et al (2006) Laboratory R&D on integrated energy systems (IES). Appl Therm Eng 26(1):28–35CrossRefGoogle Scholar
  52. 52.
    Myat A, Thu K, Choon NK (2012) The experimental investigation on the performance of a low temperature waste heat-driven multi-bed desiccant dehumidifier (MBDD) and minimization of entropy generation. Appl Therm Eng 39(39):70–77CrossRefGoogle Scholar
  53. 53.
    Ng KC, Myat A, Hideharu Y et al (2011) A dehumidifier and a method of dehumidification: WO, WO/2011/090438[P]Google Scholar
  54. 54.
    Yao Y (2012) Research progress in the application of ultrasonic technology in the regeneration of desiccants for air-conditioning. J Refrig 33(06):12–18Google Scholar
  55. 55.
    Yao Y, Zhang W, Liu S (2009) Feasibility study on power ultrasound for regeneration of silica gel—a potential desiccant used in air-conditioning system. Appl Energy 86(11):2394–2400CrossRefGoogle Scholar
  56. 56.
    Yao Y, Liu S, Zhang W (2008) Regeneration of silica gel using high-intensity ultrasonic under low temperatures. Energy Fuels 23(1):457–463CrossRefGoogle Scholar
  57. 57.
    Yao Y, Zhang W, Liu S (2009) Parametric study of high-intensity ultrasonic for silica gel regeneration. Energy Fuels 23(6):3150–3158CrossRefGoogle Scholar
  58. 58.
    Zhang W, Yao Y, He B et al (2011) The energy-saving characteristic of silica gel regeneration with high-intensity ultrasound. Appl Energy 88(6):2146–2156CrossRefGoogle Scholar
  59. 59.
    Yang K, Yao Y, Liu S et al (2013) Investigation on applying ultrasonic to the regeneration of a new honeycomb desiccant. Int J Therm Sci 72(10):159–171CrossRefGoogle Scholar
  60. 60.
    Yao Y, Wang W, Yang K (2015) Mechanism study on the enhancement of silica gel regeneration by power ultrasound with field synergy principle and mass diffusion theory. Int J Heat Mass Transf 90:769–780CrossRefGoogle Scholar
  61. 61.
    Yao Y, Zhang W, He B (2011) Investigation on the kinetic models for the regeneration of silica gel by hot air combined with power ultrasonic. Energy Convers Manag 52(11):3319–3326CrossRefGoogle Scholar
  62. 62.
    Yao Y, Zhang W, Yang K et al (2012) Theoretical model on the heat and mass transfer in silica gel packed-beds during the regeneration assisted by high-intensity ultrasound. Int J Heat Mass Transf 55(23):7133–7143CrossRefGoogle Scholar
  63. 63.
    Yao Y, Yang K, Zhang W et al (2014) Parametric study on silica gel regeneration by hot air combined with ultrasonic field based on a semi-theoretic model. Int J Therm Sci 84:86–103CrossRefGoogle Scholar
  64. 64.
    Ma K, Jin S, Pan Y (2016) Research status and prospect of ultrasonic technology in food development. The Food IndustryGoogle Scholar
  65. 65.
    Song GS, Hu S, Li L (2008) Researches and applications of ultrasonic technology in food industry. Mod Food Sci Technol 06:609–612Google Scholar
  66. 66.
    Yao S, Hertzog DE, Zeng S et al (2003) Porous glass electroosmotic pumps: design and experiments. J Colloid Interface Sci 268(1):143–153CrossRefGoogle Scholar
  67. 67.
    Zhang G, Shao S, Lou X et al (2014) Investigation on the adsorption mechanism and electro-osmosis regeneration of common solid desiccants. J Refrig 35(1):8–13Google Scholar
  68. 68.
    Qi R, Tian C, Shao S (2010) Experimental investigation on possibility of electro-osmotic regeneration for solid desiccant. Appl Energy 87(7):2266–2272CrossRefGoogle Scholar
  69. 69.
    Fan L (2014) Research of microwave heating in dehumidification technology and application of evaporative air conditioning. Harbin Institute of Technology, HarbinGoogle Scholar
  70. 70.
    Saitake M, Kubota M, Watanabe F et al (2007) Enhancement of water desorption from zeolite by microwave irradiation. Kagaku Kogaku Ronbunshu 33(1):53–58CrossRefGoogle Scholar
  71. 71.
    Watanabe F, Sumitani K, Kashiwagi T et al (2009) Influence of microwave irradiation on water-vapor desorption from zeolites. Kagaku Kogaku Ronbunshu 35(5):431–435CrossRefGoogle Scholar
  72. 72.
    Liu H, Ma X, Guo P et al (2014) Microwave drying characteristics and kinetic model of food waste. Chin Sci Bull 59(10):936–942CrossRefGoogle Scholar
  73. 73.
    Ohgushi T, Ishimaru K (2001) Dielectric properties of dehydrated NaA zeolite, analyses and calculation of dielectric spectra. Phys Chem Chem Phys 3(15):3229–3234CrossRefGoogle Scholar
  74. 74.
    Ohgushi T, Akiko W (2001) Simple suppressing method of thermal runaway in microwave heating of zeolite and its application. PhysChemcomm 4(3):18–20CrossRefGoogle Scholar
  75. 75.
    Ohgushi T, Nagae M (2003) Quick activation of optimized zeolites with microwave heating and utilization of zeolites for reusable desiccant. J Porous Mater 10(2):139–143CrossRefGoogle Scholar
  76. 76.
    Ohgushi T, Nagae M (2005) Durability of zeolite against repeated activation treatments with microwave heating. J Porous Mater 12(4):265–271CrossRefGoogle Scholar
  77. 77.
    Hu J (1999) Study on the production technology of microwave rapid drying silica gel. Packag EngGoogle Scholar
  78. 78.
    Fairey P, Vieira R, Kerestecioglu A (1985) Desiccant enhanced nocturnal radiation: a new passive cooling concept. In: Proceedings of the 10th national passive solar conference, Raleigh, NC, pp 271–275Google Scholar
  79. 79.
    Fairey P, Kerestecioglu A, Vieira R Analytical investigation of the desiccant enhanced nocturnal radiation cooling concept. In: Florida Solar Energy Center, FSEC-CR-152-86, Cape Canaveral, FL, 1986Google Scholar
  80. 80.
    Swami M, Rudd A, Fairey P et al An assessment of the desiccant enhanced radiative (DESRAD) cooling concept and a description of the diurnal test facility. In: Florida Solar Energy Center, FSEC-CR-237-88, Cape Canaveral, FL, 1989Google Scholar
  81. 81.
    Swami M, Fairey P, Kerestecioglu A An analytical assessment of the desiccant enhanced radiative cooling concept. In: Proceedings of the 12th annual ASME solar energy conference, Miami, Florida, USA, 1990, pp 397–406Google Scholar
  82. 82.
    Lu SM, Shyu RJ, Yan WJ et al (1995) Development and experimental validation of two novel solar desiccant-dehumidification-regeneration systems. Energy 20(8):751–757CrossRefGoogle Scholar
  83. 83.
    Saito Y (1993) Regeneration characteristics of adsorbent in the integrated desiccant/collector. J SolEnergy Eng 115(3):169–175MathSciNetGoogle Scholar
  84. 84.
    Techajunta S, Chirarattananon S, Exell RHB (1999) Experiments in a solar simulator on solid desiccant regeneration and air dehumidification for air conditioning in a tropical humid climate. Renew Energy 17(4):549–568CrossRefGoogle Scholar
  85. 85.
    Kumar A, Chaudhary A, Yaday A (2014) The regeneration of various solid desiccants by using a parabolic dish collector and adsorption rate: an experimental investigation. Int J Green Energy 11(9):936–953CrossRefGoogle Scholar
  86. 86.
    Pramuang S, Exell RHB (2007) The regeneration of silica gel desiccant by air from a solar heater with a compound parabolic concentrator. Renew Energy 32(1):173–182CrossRefGoogle Scholar
  87. 87.
    Zheng Y, Yuan W (2006) Study of solar/waste heat driven solid desiccant cooling system. Refrig Air-condGoogle Scholar
  88. 88.
    Ge TS, Dai YJ, Li Y et al (2012) Simulation investigation on solar powered desiccant coated heat exchanger cooling system. Appl Energy 93(5):532–540CrossRefGoogle Scholar
  89. 89.
    Ge TS, Dai YJ, Wang RZ et al (2013) Feasible study of a self-cooled solid desiccant cooling system based on desiccant coated heat exchanger. Appl Therm Eng 58(1–2):281–290CrossRefGoogle Scholar
  90. 90.
    Ge TS, Dai YJ, Wang RZ et al (2010) Experimental comparison and analysis on silica gel and polymer coated fin-tube heat exchangers. Energy 35(7):2893–2900CrossRefGoogle Scholar
  91. 91.
    Zheng H, He K, Yang Y et al (2006) Study on a multi-effect’s regeneration and integral-type solar desalination unit with falling film evaporation and condensation processes. Sol Energy 80(9):1189–1198CrossRefGoogle Scholar
  92. 92.
    Fountoukidis E, Yanniotis S, Leontaridis N (1993) Theoretical model for direct solar regeneration of hygroscopic solutions. Sol Energy 51(4):247–253CrossRefGoogle Scholar
  93. 93.
    Yadav A (2014) The regeneration of various solid desiccants by using a parabolic dish collector and adsorption rate: an experimental investigation. Int J Green Energy 11(9):936–953CrossRefGoogle Scholar
  94. 94.
    Tang Y, Zheng R, Li X (1988) Solar regeneration of desiccant for drying volatile and aromatic material. Acta Energiae Solaris Sinica 9(3):310–316Google Scholar
  95. 95.
    Guo H (2013) Experiment study on the properties of the solid desiccant bed regenerated with solar directly. Guangdong University of Technology, Guang ZhouGoogle Scholar
  96. 96.
    Liu X, Li Z, Jiang Y et al (2006) Annual performance of liquid desiccant based independent humidity control HVAC system. Appl Therm Eng 26(11):1198–1207CrossRefGoogle Scholar
  97. 97.
    Ye Y, Zhi LU, Lian ZW et al (2008) Experimental study on the feasible application of ultrasonic in regeneration of solid dehumidizer. J Shanghai Jiaotong Univ 42(1):138–141Google Scholar
  98. 98.
    Rambhad KS, Walke PV, Tidke DJ (2016) Solid desiccant dehumidification and regeneration methods—a review. Renew Sustain Energy Rev 59:73–83CrossRefGoogle Scholar
  99. 99.
    Jani DB, Mishra M, Sahoo PK (2016) Solid desiccant air conditioning—a state of the art review. Renew Sustain Energy Rev 60:1451–1469CrossRefGoogle Scholar
  100. 100.
    Techajunta S, Chirarattananon S, Exell RHB (1999) Experiments in a solar simulator on solid desiccant regeneration and air dehumidification for air conditioning in a tropical humid climate. Renew Energy 17(4):549–568CrossRefGoogle Scholar
  101. 101.
    Pramuang S, Exell RHB (2007) The regeneration of silica gel desiccant by air from a solar heater with a compound parabolic concentrator. Renew Energy 32(1):173–182CrossRefGoogle Scholar
  102. 102.
    Bhool R, Kumar P, Kumar P, Mehla, A (2014) Performance evaluation and regeneration of activated charcoal by simulated solar parabolic dish collector. Int J Sci, Eng Technol Res (IJSETR) 3:1507–1514Google Scholar
  103. 103.
    Dong L, Dai Y, Li H et al (2011) Experimental investigation and theoretical analysis of solar heating and humidification system with desiccant rotor. Energy Build 43(5):1113–1122CrossRefGoogle Scholar
  104. 104.
    Cherbański R, Molga E (2009) Intensification of desorption processes by use of microwaves—an overview of possible applications and industrial perspectives. Chem Eng Process 48(1):48–58CrossRefGoogle Scholar
  105. 105.
    Bathen D (2003) Physical waves in adsorption technology—an overview. Sep Purif Technol 33(2):163–177CrossRefGoogle Scholar
  106. 106.
    Zhu J, Kuznetsov AV, Sandeep KP (2007) Mathematical modeling of continuous flow microwave heating of liquids (effects of dielectric properties and design parameters). Int J Therm Sci 46(4):328–341CrossRefGoogle Scholar
  107. 107.
    Ania CO, Parra JB, Menéndez JA et al (2005) Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons. Microporous Mesoporous Mater 85(1–2):7–15CrossRefGoogle Scholar
  108. 108.
    Polaert I, Estel L, Huyghe R et al (2010) Adsorbents regeneration under microwave irradiation for dehydration and volatile organic compounds gas treatment. Chem Eng J 162(3):941–948CrossRefGoogle Scholar
  109. 109.
    Shi C, Wang T, Zhang FH et al (2015) Study on regeneration of granular activated carbon by microwave thermal treatment. J Sichuan UnivGoogle Scholar
  110. 110.
    Appukkuttan P, Eycken EVD (2006) Microwave-assisted natural product chemistry. In: Microwave Methods in Organic Synthesis. Springer, Berlin, Heidelberg, pp 1–47Google Scholar
  111. 111.
    Reimbert, CG, MINZONI AA et al (1996) Effect of radiation losses on hotspot formation and propagation in microwave heating. Ima J Appl Math 57(2):165–179MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Yuen FK, Hameed BH (2009) Recent developments in the preparation and regeneration of activated carbons by microwaves. Adv Coll Interface Sci 149(1–2):19–27CrossRefGoogle Scholar
  113. 113.
    Hazevazife A, Moghadam PA, Nikbakht AM et al (2012) Designing, manufacturing and evaluating microwave -hot air combination drier. Life Sci J 9(3):630–637Google Scholar
  114. 114.
    Yang WS, Guo HH, Wang ZY et al (2013) Performance research of a solid desiccant material regenerating directly with solar energy. New Build Mater 291–294:145–151Google Scholar
  115. 115.
    Mao HP, Zhang XD, Xue LI et al (2008) Model establishment for grape leaves dry-basis moisture content based on spectral signature. J Jiangsu Univ 29(5):369–372Google Scholar
  116. 116.
    Yang WS, Deng H, Bi Y et al (2016) Experimental study on regeneration performance of solid desiccant by micro wave. Build Technol Dev 43:11–15Google Scholar
  117. 117.
    Niu JL, Zhang LZ (2002) Effects of wall thickness on the heat and moisture transfers in desiccant wheels for air dehumidification and enthalpy recovery. Int Commun Heat Mass Transf 29(2):255–268CrossRefGoogle Scholar
  118. 118.
    Zhang LZ, Niu JL (2002) Performance comparisons of desiccant wheels for air dehumidification and enthalpy recovery. Appl Therm Eng 22(12):1347–1367CrossRefGoogle Scholar
  119. 119.
    Koua KB, Fassinou WF, Gbaha P et al (2009) Mathematical modelling of the thin layer solar drying of banana, mango and cassava. Energy 34(10):1594–1602CrossRefGoogle Scholar
  120. 120.
    Ozdemir M, Devres YO (2000) The thin layer drying characteristics of hazelnuts during roasting. J Food Eng 42(4):225–233CrossRefGoogle Scholar
  121. 121.
    Soysal Y (2004) Microwave drying characteristics of parsley. Biosys Eng 89(2):167–173CrossRefGoogle Scholar
  122. 122.
    Ren G, Chen F (1998) Drying of American ginseng (Panax quinquefolium) roots by microwave-hot air combination. J Food Eng 35(4):433–443CrossRefGoogle Scholar
  123. 123.
    Celma AR, Rojas S, Lopez-Rodríguez F (2008) Mathematical modelling of thin-layer infrared drying of wet olive husk. Chem Eng Process 47(9–10):1810–1818CrossRefGoogle Scholar
  124. 124.
    Liu Y, Yan H, Lam JC (2014) Thermal comfort and building energy consumption implications—a review. Appl Energy 115(4):164–173Google Scholar
  125. 125.
    Pérez-Lombard L, Ortiz J, Pout C (2014) A review on buildings energy consumption information. Energy Build 40(3):394–398CrossRefGoogle Scholar
  126. 126.
    Wang RZ, Yu X, Ge TS et al (2013) The present and future of residential refrigeration, power generation and energy storage. Appl Therm Eng 53(2):256–270CrossRefGoogle Scholar
  127. 127.
    Mazzei P, Minichiello F, Palma D (2005) HVAC dehumidification systems for thermal comfort: a critical review. Appl Therm Eng 25(5):677–707CrossRefGoogle Scholar
  128. 128.
    Chiang YC, Chen CH, Chiang YC et al (2016) Circulating inclined fluidized beds with application for desiccant dehumidification systems. Appl Energy 175:199–211CrossRefGoogle Scholar
  129. 129.
    La D, Dai YJ, Li Y et al (2012) Use of regenerative evaporative cooling to improve the performance of a novel one-rotor two-stage solar desiccant dehumidification unit. Appl Therm Eng 42(4):11–17CrossRefGoogle Scholar
  130. 130.
    Awad MM, Kattaya AR, Hamed AM, et al (2008) Theoretical and experimental investigation on the radial flow desiccant dehumidification bed. Appl Thermal Eng 28(1):75–85CrossRefGoogle Scholar
  131. 131.
    Hamed AM, Abd-Elrahman WR, El-Emam SH et al (2013) Theoretical and experimental investigation on the transient coupled heat and mass transfer in a radial flow desiccant packed bed. Energy Convers Manag 65(6):262–271CrossRefGoogle Scholar
  132. 132.
    Hamed AM, Rahman WR, An E, El-Emam SH (2010) Experimental study of the transient adsorption/desorption characteristics of silica gel particles in fluidized bed. Energy 35(6):2468–2483CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Wansheng Yang
    • 1
    Email author
  • Shuli Liu
    • 2
  • Xiaoqiang Zhai
    • 3
  • Yin Bi
    • 1
  • Zhangyuan Wang
    • 1
  • Xudong Zhao
    • 4
  1. 1.School of Civil and Transportation EngineeringGuangdong University of TechnologyGuangzhouChina
  2. 2.Department of Civil Engineering, Architecture and Building, Faculty of Engineering and ComputingCoventry UniversityCoventryUK
  3. 3.Institute of Refrigeration and CryogenicsShanghai Jiao Tong UniversityShanghaiChina
  4. 4.School of Engineering and Computer ScienceUniversity of HullHullUK

Personalised recommendations